Under serum-free conditions, rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), induces apoptosis of cells lacking functional p53. Cells expressing wild-type p53 or p21(Cip1)arrest in G1 and remain viable. In cells lacking functional p53, rapamycin or amino acid deprivation induces rapid and sustained activation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase, and elevation of phosphorylated c-Jun that results in apoptosis. This stress response depends on expression of eukaryotic initiation factor 4E binding protein 1 and is suppressed by p21(Cip1) independent of cell cycle arrest. Rapamycin induces p21(Cip1) binding to ASK1, suppressing kinase activity and attenuating cellular stress. These results suggest that inhibition of mTOR triggers a potentially lethal response that is prevented only in cells expressing p21(Cip1).
Mammalian target of rapamycin (mTOR) controls initiation of translation through regulation of ribosomal p70S6 kinase (S6K1) and eukaryotic translation initiation factor-4E (eIF4E) binding protein (4E-BP). mTOR is considered to be located predominantly in cytosolic or membrane fractions and may shuttle between the cytoplasm and nucleus. In most previous studies a single cell line, E1A-immortalized human embryonic kidney cells (HEK293), has been used. Here we show that in human malignant cell lines, human fibroblasts, and murine myoblasts mTOR is predominantly nuclear. In contrast, mTOR is largely excluded from the nucleus in HEK293 cells. Hybrids between HEK293 and Rh30 rhabdomyosarcoma cells generated cells co-expressing markers unique to HEK293 (E1A) and Rh30 (MyoD). mTOR distribution was mainly nuclear with detectable levels in the cytoplasm. mTOR isolated from Rh30 nuclei phosphorylated recombinant GST-4E-BP1 (Thr-46) in vitro and thus has kinase activity. We next investigated the cellular distribution of mTOR substrates 4E-BP, S6K1, and eIF4E. 4E-BP was exclusively detected in cytoplasmic fractions in all cell lines. S6K1 was localized in the cytoplasm in colon carcinoma, HEK293 cells, and IMR90 fibroblasts. S6K1 was readily detected in all cellular fractions derived from rhabdomyosarcoma cells. eIF4E was detected in all fractions derived from rhabdomyosarcoma cells but was not detectable in nuclear fractions from colon carcinoma HEK293 or IMR90 cells.
p53 mutation and MDM2 gene amplification frequencies are extremely low in RMS tumors, but a wild-type p53 genotype is not always associated with a favorable prognosis.
Under serum-free conditions, rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), induces a cellular stress response characterized by rapid and sustained activation of the apoptosis signal-regulating kinase 1 (ASK1) signaling pathway and selective apoptosis of cells lacking functional p53. Here we have investigated how mTOR regulates ASK1 signaling using p53-mutant rhabdomyosarcoma cells. In Rh30 cells, ASK1 was found to physically interact with protein phosphatase 5 (PP5), previously identified as a negative regulator of ASK1. Rapamycin did not affect either protein level of PP5 or association of PP5 with ASK1. Instead, rapamycin caused rapid dissociation of the PP2A-B؆ regulatory subunit (PR72) from the PP5-ASK1 complex, which was associated with reduced phosphatase activity of PP5. This effect was dependent on expression of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Down-regulation of PP5 activity by rapamycin coordinately activated ASK1, leading to elevated phosphorylation of c-Jun. Amino acid deprivation, which like rapamycin inhibits mTOR signaling, also inhibited PP5 activity, caused rapid dissociation of PR72, and activated ASK1 signaling. Overexpression of PP5, but not the PP2A catalytic subunit, blocked rapamycin-induced phosphorylation of c-Jun, and protected cells from rapamycin-induced apoptosis. The results suggest that PP5 is downstream of mTOR, and positively regulated by the mTOR pathway. The findings suggest that in the absence of serum factors, mTOR signaling suppresses apoptosis through positive regulation of PP5 activity and suppression of cellular stress.
Rapamycin, a selective inhibitor of mTORC1 signaling, blocks terminal myoblast differentiation. We found that downregulation of rictor, a component of the mTORC2 complex, but not downregulation of raptor, a component of the mTORC1 complex, prevented terminal differentiation (fusion) of C2C12 myoblasts. Both rapamycin and rictor downregulation suppressed the phosphorylation of AKT(S 473 ), and rapamycin treatment of C2C12 myoblasts disrupted the mTORC2 complex. Importantly, downregulation of rictor inhibited TORC2 signaling without inhibiting mTORC1 signaling, suggesting that inhibition of mTORC1 by rapamycin may not be the cause of arrested differentiation. In support of this, expression of a phosphomimetic mutant AKT(S473D) in rictor-deficient cells rescued myoblast fusion even in the presence of rapamycin. mTORC2 signaling to AKT appears necessary for downregulation of the Rho-associated kinase (ROCK1) that occurs during myogenic differentiation. Rapamycin treatment prevented ROCK1 inactivation during differentiation, while suppression of ROCK1 activity during differentiation and myoblast fusion was restored through expression of AKT(S473D), even in the presence of rapamycin. Further, the ROCK inhibitor Y-27632 restored terminal differentiation in rapamycin-treated myoblasts. These results provide the first evidence of a specific role for mTORC2 signaling in terminal myogenic differentiation.Differentiation of skeletal muscle cells involves highly coordinated processes involving myogenic determination of pluripotent mesodermal precursors, withdrawal from the cell cycle, subsequent expression of myotube-specific genes, and cell fusion to form multinucleated myotubes (5,19,23,33). AKT represents a nodal point, signaling to several pathways to positively or negatively regulate growth, proliferation, survival, and myogenic differentiation (34,35). AKT phosphorylates the FoxO1a transcription factor required for myotube fusion of primary myoblasts (3), causing cytoplasmic localization. However, in primary myoblasts and C2C12 myoblasts, phosphorylation of FoxO1a appears partially independent of the PI3K/ AKT pathway, possibly regulated through the Rho-associated kinase ROCK1. Inactivation of ROCK1 has been shown to be necessary for FoxO1a nuclear translocation and C2C12 cell fusion (20). AKT also activates mTOR (mammalian target of rapamycin) through phosphorylation and inactivation of the tuberous sclerosis complex (36) and phosphorylation of PRAS40, an endogenous inhibitor of mTOR (31, 32). Recent studies have shown that the TOR kinase(s) exists in two complexes that are conserved (25,36). In mammalian cells, TORC1 comprises mTOR, raptor, and mLST8 and is part of a pathway that senses nutrient (amino acids, O 2 , AMP) and growth factor status. mTORC1 activates S6K1 and phosphorylates and inactivates 4E-BPs, promoting association of eIF4E, the RNA cap-binding protein, with the eIF4G scaffolding protein and assembly of the eIF4F preinitiation translation complex (36). Importantly, rapamycin in complex with the immuno...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.