The immunosuppressant rapamycin interferes with G1-phase progression in lymphoid and other cell types by inhibiting the function of the mammalian target of rapamycin (mTOR). mTOR was determined to be a terminal kinase in a signaling pathway that couples mitogenic stimulation to the phosphorylation of the eukaryotic initiation factor (eIF)-4E-binding protein, PHAS-I. The rapamycin-sensitive protein kinase activity of mTOR was required for phosphorylation of PHAS-I in insulin-stimulated human embryonic kidney cells. mTOR phosphorylated PHAS-I on serine and threonine residues in vitro, and these modifications inhibited the binding of PHAS-I to eIF-4E. These studies define a role for mTOR in translational control and offer further insights into the mechanism whereby rapamycin inhibits G1-phase progression in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.