This paper describes our system in the CoNLL-2016 shared task. Our system takes a piece of newswire text as input and returns the discourse relations. In our system we use a pipeline to conduct each subtask. Our system is evaluated on the CoNLL-2016 Shared Task closed track and obtains 0.1515 in F1 measurement, especially the part of detecting connectives, which achieves 0.9838 on blind test set.
Wetlands have been proposed as a sink for pollutants such as heavy metals. Wetland plants play a significant role in the phytoremediation of heavy metals. Here, we isolated and characterized three novel nickel (Ni)-resistant endophytic bacteria (NiEB) from the wetland plant Tamarix chinensis. The NiEB were identified as Stenotrophomonas sp. S20, Pseudomonas sp. P21 and Sphingobium sp. S42. All isolates tolerated 50 mg L−1 Ni, with isolates S20 and P21 being more tolerant to Ni at up to 400 mg L−1. Moreover, isolate S42 removed 33.7% of nickel sulfate from the water by forming white precipitates. The three isolates exhibited different plant growth-promoting (PGP) traits related to the production of indole acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Phytotoxicity studies revealed that the growth of the wetland plants in a high Ni concentration (200 mg L−1) recovered after co-incubation with isolate S42. Overall, this study presents the first report of NiEB isolation from wetland plants and provides novel insights into the diverse functions of endophytic bacteria in a plant host with the potential to improve Ni phytoremediation.
Lignocellulase production from straw fermentation has been widely investigated but the research has neglected to quantify fermentation-derived residue transformation to the humus-like substance (HULIS). To investigate the conversion efficacy of corn stalk residue to HULIS, the amount of HULIS associated with chemical composition and structural changes of humic acid-like substances (HAL) was investigated in a 30 L solid-state fermentation tank during a short period of eight days. The results show that the highest decomposition rate of corn stalk and the highest activity of cellulase, xylanase, and β-glucosidase appeared at the fourth day. At the end of fermenting process, the amount of humic acid-like substances (HAL) and the percentage of HAL in humus acid (PQ value) increased 17.5% and 8.9%, respectively, indicating Trichoderma reesei facilitates the transformation of corn stalk residue to HAL. Fatty acids decreased while aromatic carbon and carboxyl content significantly increased during the ongoing fermentation, which had a positive impact on the HAL thermal stability. The FTIR spectral and thermal analysis revealed an improvement in HAL degrees of condensation, oxidation, and aromatization. The present study suggests that the residue of corn stalks fermented with T. reesei might be a good fertilizer to improve soil characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.