Picky eating seems to occur at similar prevalence rates in China as has been reported in other countries. Parents' perceptions of food refusal do not reflect actual intakes, nor do nutrient intakes of picky eaters show additional gaps compared to non-picky eating children. In healthy children with typical growth patterns, picky eating seems to be a normal phase of development experienced by some children, without substantial consequences on their nutrient or food group intakes.
Dysregulation of macroautophagy/autophagy contributes to the delay of wound healing in diabetic skin. N 6 -methyladenosine (m 6 A) RNA modification is known to play a critical role in regulating autophagy. In this study, it was found that SQSTM1/p62 (sequestosome 1), an autophagy receptor, was significantly downregulated in two human keratinocyte cells lines with short-term high-glucose treatment, as well as in the epidermis of diabetic patients and a db/db mouse model with long-term hyperglycemia. Knockdown of SQSTM1 led to the impairment of autophagic flux, which was consistent with the results of high-glucose treatment in keratinocytes. Moreover, the m 6 A reader protein YTHDC1 (YTH domain containing 1), which interacted with SQSTM1 mRNA, was downregulated in keratinocytes under both the acute and chronic effects of hyperglycemia. Knockdown of YTHDC1 affected biological functions of keratinocytes, which included increased apoptosis rates and impaired wound-healing capacity. In addition, knockdown of endogenous YTHDC1 resulted in a blockade of autophagic flux in keratinocytes, while overexpression of YTHDC1 rescued the blockade of autophagic flux induced by high glucose. In vivo, knockdown of endogenous Ythdc1 or Sqstm1 inhibited autophagy in the epidermis and delayed wound healing. Interestingly, we found that a decrease of YTHDC1 drove SQSTM1 mRNA degradation in the nucleus. Furthermore, the results revealed that YTHDC1 interacted and cooperated with ELAVL1/HuR (ELAV like RNA binding protein 1) in modulating the expression of SQSTM1. Collectively, this study uncovered a previously unrecognized function for YTHDC1 in modulating autophagy via regulating the stability of SQSTM1 nuclear mRNA in diabetic keratinocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.