Multiple tissue interactions take place during the development of the limb musculoskeletal system. While appendicular myogenesis has been extensively studied, development of connective tissue associated with muscles has received less attention. In the developing Drosophila leg, tendon-like connective tissue arises from clusters of epithelial cells that invaginate into the leg cavity and then elongate to form internal tube-shape structures along which muscle precursors are distributed. Here we show that stripe-positive appendicular precursors of tendon-like connective tissue are set up among intersegmental leg joint cells expressing odd-skipped genes, and that Notch signaling is necessary and locally sufficient to trigger stripe expression. This study also finds that odd-skipped genes and stripe are both required downstream of Notch to promote morphogenesis of tube-shaped internal tendons of the leg.
The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton) via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well-established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here, we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates) during the early steps of leg development, we affect the spatial localization of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes.
To ensure locomotion and body stability, the active role of muscle contractions relies on a stereotyped muscle pattern set in place during development. This muscle patterning requires a precise assembly of the muscle fibers with the skeleton via a specialized connective tissue, the tendon. Like in vertebrate limbs, Drosophila leg muscles make connections with specific long tendons that extend through different segments. During the leg disc development, cell precursors of long tendons rearrange and collectively migrate to form a tube-shaped structure. A specific developmental program underlies this unique feature of tendon-like cells in the Drosophila model. We provide for the first time a transcriptomic profile of leg tendon precursors through fluorescence-based cell sorting. From promising candidates, we identified the Krüppel-like factor Dar1 as a critical actor of leg tendon development. Specifically expressed in the leg tendon precursors, loss of dar1 disrupts actin-rich filopodia formation and tendon elongation. Our findings show that Dar1 acts downstream of Stripe and is required to set up the correct number of tendon progenitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.