The prefrontal cortex is believed to play a major role in depression and suicidal behavior through regulation of cognition, memory, recognition of emotion, and anxiety-like states, with numerous post-mortem studies documenting a prefrontal serotonergic dysregulation considered to be characteristic of depressive psychopathology. This study was carried out to detect changes in gene expression associated with both suicide and major depression using oligonucleotide microarrays (Affymetrix HG-U133 chip set) summarizing expression patterns in primarily ventral regions of the prefrontal cortex (BA44, 45, 46 and 47). A total of 37 male subjects were included in this study, of which 24 were suicides (depressed suicides = 16, nondepressed suicides = 8) and 13 were matched controls. All subjects were clinically characterized by means of psychological autopsies using structured interviews. Unique patterns of differential expression were validated in each of the cortical regions evaluated, with group-specific changes highlighting the involvement of several key neurobiological pathways that have been implicated in both suicide and depression. An overrepresentation of factors involved in cell cycle control and cell division (BA44), transcription (BA44 and 47) and myelination (BA46) was seen in gene ontology analysis of differentially expressed genes, which also highlights changes in the expression of genes involved in ATP biosynthesis and utilization across all areas. Gene misexpression in BA46 was most pronounced between the two suicide groups, with many significant genes involved in GABAergic neurotransmission. The pronounced misexpression of genes central to GABAergic signaling and astrocyte/ oligodendrocyte function provides further support for a central glial pathology in depression and suicidal behavior.
These data suggest a role for SSAT, the rate-limiting enzyme in the catabolism of polyamines, in suicide and depression and a role for the SSAT342 locus in the regulation of SSAT gene expression.
The limbic system has consistently been associated with the control of emotions and with mood disorders. The goal of this study was to identify new molecular targets associated with suicide and with major depression using oligonucleotide microarrays in the limbic system (amygdala, hippocampus, anterior cingulate gryus (BA24) and posterior cingulate gyrus (BA29)). A total of 39 subjects were included in this study. They were all male subjects and comprised 26 suicides (depressed suicides = 18, non depressed suicides = 8) and 13 matched controls. Brain gene expression analysis was carried out on human brain samples using the Affymetrix HG U133 chip set. Differential expression in each of the limbic regions showed group-specific patterns of expression, supporting particular neurobiological mechanisms implicated in suicide and depression. Confirmation of genes selected based on their significance and the interest of their function with reverse transcriptase-polymerase chain reaction showed consistently correlated signals with the results obtained in the microarray analysis. Gene ontology analysis with differentially expressed genes revealed an overrepresentation of transcription and metabolism-related genes in the hippocampus and amygdala, whereas differentially expressed genes in BA24 and BA29 were more generally related to RNA-binding, regulation of enzymatic activity and protein metabolism. Limbic expression patterns were most extensively altered in the hippocampus, where processes related to major depression were associated with altered expression of factors involved with transcription and cellular metabolism. Additionally, our results confirm previous evidence pointing to global alteration of gabaergic neurotransmission in suicide and major depression, offering new avenues in the study and possibly treatment of such complex disorders. Overall, these data suggest that specific patterns of expression in the limbic system contribute to the etiology of depression and suicidal behaviors and highlight the role of the hippocampus in major depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.