BackgroundMost studies investigating the neurobiology of depression and suicide have focused on the serotonergic system. While it seems clear that serotonergic alterations play a role in the pathogenesis of these major public health problems, dysfunction in additional neurotransmitter systems and other molecular alterations may also be implicated. Microarray expression studies are excellent screening tools to generate hypotheses about additional molecular processes that may be at play. In this study we investigated brain regions that are known to be implicated in the neurobiology of suicide and major depression are likely to represent valid global molecular alterations.Methodology/Principal FindingsWe performed gene expression analysis using the HG-U133AB chipset in 17 cortical and subcortical brain regions from suicides with and without major depression and controls. Total mRNA for microarray analysis was obtained from 663 brain samples isolated from 39 male subjects, including 26 suicide cases and 13 controls diagnosed by means of psychological autopsies. Independent brain samples from 34 subjects and animal studies were used to control for the potential confounding effects of comorbidity with alcohol. Using a Gene Ontology analysis as our starting point, we identified molecular pathways that may be involved in depression and suicide, and performed follow-up analyses on these possible targets. Methodology included gene expression measures from microarrays, Gene Score Resampling for global ontological profiling, and semi-quantitative RT-PCR. We observed the highest number of suicide specific alterations in prefrontal cortical areas and hippocampus. Our results revealed alterations of synaptic neurotransmission and intracellular signaling. Among these, Glutamatergic (GLU) and GABAergic related genes were globally altered. Semi-quantitative RT-PCR results investigating expression of GLU and GABA receptor subunit genes were consistent with microarray data.Conclusions/SignificanceThe observed results represent the first overview of global expression changes in brains of suicide victims with and without major depression and suggest a global brain alteration of GLU and GABA receptor subunit genes in these conditions.
The prefrontal cortex is believed to play a major role in depression and suicidal behavior through regulation of cognition, memory, recognition of emotion, and anxiety-like states, with numerous post-mortem studies documenting a prefrontal serotonergic dysregulation considered to be characteristic of depressive psychopathology. This study was carried out to detect changes in gene expression associated with both suicide and major depression using oligonucleotide microarrays (Affymetrix HG-U133 chip set) summarizing expression patterns in primarily ventral regions of the prefrontal cortex (BA44, 45, 46 and 47). A total of 37 male subjects were included in this study, of which 24 were suicides (depressed suicides = 16, nondepressed suicides = 8) and 13 were matched controls. All subjects were clinically characterized by means of psychological autopsies using structured interviews. Unique patterns of differential expression were validated in each of the cortical regions evaluated, with group-specific changes highlighting the involvement of several key neurobiological pathways that have been implicated in both suicide and depression. An overrepresentation of factors involved in cell cycle control and cell division (BA44), transcription (BA44 and 47) and myelination (BA46) was seen in gene ontology analysis of differentially expressed genes, which also highlights changes in the expression of genes involved in ATP biosynthesis and utilization across all areas. Gene misexpression in BA46 was most pronounced between the two suicide groups, with many significant genes involved in GABAergic neurotransmission. The pronounced misexpression of genes central to GABAergic signaling and astrocyte/ oligodendrocyte function provides further support for a central glial pathology in depression and suicidal behavior.
A reduction of TrkB.T1 expression in the frontal cortex of a subpopulation of suicide completers is associated with the methylation state of the promoter region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.