The structure of the dye layer adsorbed on the titania substrate in a dye-sensitized solar cell is of fundamental importance for the function of the cell, since it strongly influences the injection of photoelectrons from the excited dye molecules into the titania substrate. The adsorption isotherms of the N719 ruthenium-based dye were determined both with a direct method using the depth profiling technique neutral impact collision ion scattering spectroscopy (NICISS) and with the standard indirect solution depletion method. It is found that the dye layer adsorbed on the titania surface is laterally inhomogeneous in thickness and there is a growth mechanism already from low coverage levels involving a combination of monolayers and multilayers. It is also found that the amount of N719 adsorbed on the substrate depends on the titania structure. The present results show that dye molecules in dye-sensitized solar cells are not necessarily, as presumed, adsorbed as a self-assembled monolayer on the substrate.
Water is often used as the medium for characterizing the effects of radiation on living tissue. However, in this study, charged-particle track simulations are employed to quantify the induced physicochemical and potential biological implications when a primary ionising particle with energy 10 keV strikes a medium made up entirely of water or pyrimidine. Note that pyrimidine was chosen as the DNA/RNA bases cytosine, thymine, and uracil can be considered pyrimidine derivatives. This study aims to assess the influence of the choice of medium on the charged-particle transport, and identify how appropriate it is to use water as the default medium to describe the effects of ionising radiation on living tissue. Based on the respective electron interaction cross sections, we provide a model, which allows the study of radiation effects not only in terms of energy deposition (absorbed dose and stopping power) but also in terms of the number of induced molecular processes. Results of these parameters for water and pyrimidine are presented and compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.