BackgroundMycosphaerella fijiensis is a ascomycete that causes Black Sigatoka in bananas. Recently, the M. fijiensis genome was sequenced. Repetitive sequences are ubiquitous components of fungal genomes. In most genomic analyses, repetitive sequences are associated with transposable elements (TEs). TEs are dispersed repetitive DNA sequences found in a host genome. These elements have the ability to move from one location to another within the genome, and their insertion can cause a wide spectrum of mutations in their hosts. Some of the deleterious effects of TEs may be due to ectopic recombination among TEs of the same family. In addition, some transposons are physically linked to genes and can control their expression. To prevent possible damage caused by the presence of TEs in the genome, some fungi possess TE-silencing mechanisms, such as RIP (Repeat Induced Point mutation). In this study, the abundance, distribution and potential impact of TEs in the genome of M. fijiensis were investigated.ResultsA total of 613 LTR-Gypsy and 27 LTR-Copia complete elements of the class I were detected. Among the class II elements, a total of 28 Mariner, five Mutator and one Harbinger complete elements were identified. The results of this study indicate that transposons were and are important ectopic recombination sites. A distribution analysis of a transposable element from each class of the M. fijiensis isolates revealed variable hybridization profiles, indicating the activity of these elements. Several genes encoding proteins involved in important metabolic pathways and with potential correlation to pathogenicity systems were identified upstream and downstream of transposable elements. A comparison of the sequences from different transposon groups suggested the action of the RIP silencing mechanism in the genome of this microorganism.ConclusionsThe analysis of TEs in M. fijiensis suggests that TEs play an important role in the evolution of this organism because the activity of these elements, as well as the rearrangements caused by ectopic recombination, can result in deletion, duplication, inversion and translocation. Some of these changes can potentially modify gene structure or expression and, thus, facilitate the emergence of new strains of this pathogen.
In this study, we demonstrate that ClIRAP primers designed using the transposable element RetroCl1 sequence from Colletotrichum lindemuthianum can be used to generate an efficient IRAP (inter-retrotransposon amplified polymorphism) molecular marker to study intra- and inter-species diversity in fungi. It has been previously demonstrated that primers generated from this TRIM-like element can be used in the Colletotrichum species. We now prove that the RetroCl1 sequence can also be used to analyze diversity in different fungi. IRAP profiles were successfully generated for 27 fungi species from 11 different orders, and intra-species genetic variability was detected in six species. The ClIRAP primers facilitate the use of the IRAP technique for a variety of fungi without prior knowledge of the genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.