In the developing mouse embryo the first definitive(transplantable-into-the-adult) haematopoietic stem cells/long-term repopulating units (HSC/RUs) emerge in the AGM region and umbilical vessels on 10-11 days post coitum (d.p.c.). Here, by limiting dilution analysis, we anatomically map the development of definitive HSC/RUs in different embryonic tissues during early colonisation of the liver. We show that by day 12 p.c. the mouse embryo contains about 66 definitive HSC/RUs (53 in the liver, 13 in other tissues), whereas on the previous day the total number of definitive HSC/RUs in the entire conceptus is only about 3. Owing to the length of the cell cycle this dramatic increase in the number of definitive HSC/RUs in only 24 hours is unlikely to be explained purely by cell division. Therefore,extensive maturation of pre-definitive HSCs to a state when they become definitive must take place in the day 11-12 embryo. Here we firstly identify the numbers of HSCs in various organs at 11-13 d.p.c. and secondly, using an organ culture approach, we quantitatively assess the potential of the aorta-gonadmesonephros (AGM) region and the yolk sac to produce/expand definitive HSC/RUs during days 11-12 of embryogenesis. We show that the capacity of the AGM region to generate definitive HSC/RUs is high on 11 d.p.c. but significantly reduced by 12 d.p.c. Conversely, at 12 d.p.c. the YS acquires the capacity to expand and/or generate definitive HSCs/RUs, whereas it is unable to do so on 11 d.p.c. Thus, the final steps in development of definitive HSC/RUs may occur not only within the AGM region, as was previously thought, but also in the yolk sac microenvironment. Our estimates indicate that the cumulative activity of the AGM region and the yolk sac is sufficient to provide the day 12 liver with a large number of definitive HSC/RUs,suggesting that the large pool of definitive HSC/RUs in day 12 foetal liver is formed predominantly by recruiting `ready-to-use' definitive HSC/RUs from extra-hepatic sources. In accordance with this we observe growing numbers of definitive HSC/RUs in the circulation during days 11-13 of gestation,suggesting a route via which these HSCs migrate.
Biomaterial development for clinical applications is currently on the rise. This necessitates adequate in vitro testing, where the structure and composition of biomaterials must be specifically tailored to withstand in situ repair and regeneration responses for a successful clinical outcome. The chorioallantoic membrane of chicken embryos has been previously used to study angiogenesis, a prerequisite for most tissue repair and regeneration. In this study, we report an optimised ex ovo method using a glass-cling film set-up that yields increased embryo survival rates and has an improved protocol for harvesting biomaterials. Furthermore, we used this method to examine the intrinsic angiogenic capacity of a variety of biomaterials categorised as natural, synthetic, natural/synthetic and natural/natural composites with varying porosities. We detected significant differences in biomaterials’ angiogenesis with natural polymers and polymers with a high overall porosity showing a greater vascularisation compared to synthetic polymers. Therefore, our proposed ex ovo chorioallantoic membrane method can be effectively used to pre-screen biomaterials intended for clinical application.
Dermal scaffolds promote healing of debilitating skin injuries caused by burns and chronic skin conditions. Currently available products present disadvantages and therefore, there is still a clinical need for developing new dermal substitutes. This study aimed at comparing the viscoelastic, physical and bio-degradable properties of two dermal scaffolds, the collagen-based and clinically well established Integra(®) and a novel fibrin-based dermal scaffold developed at our laboratory called Smart Matrix(®), to further evaluate our previous published findings that suggested a higher influx of cells, reduced wound contraction and less scarring for Smart Matrix(®) when used in vivo. Rheological results showed that Integra(®) (G' = 313.74 kPa) is mechanically stronger than Smart Matrix(®) (G' = 8.26 kPa), due to the presence of the silicone backing layer in Integra(®). Micro-pores were observed on both dermal scaffolds, although nano-pores as well as densely packed nano-fibres were only observed for Smart Matrix(®). Average surface roughness was higher for Smart Matrix(®) (Sa = 114.776 nm) than for Integra(®) (Sa = 75.565 nm). Both scaffolds possess a highly porous structure (80-90%) and display a range of pore micro-sizes that represent the actual in vivo scenario. In vitro proteolytic bio-degradation suggested that Smart Matrix(®) would degrade faster upon implantation in vivo than Integra(®). For both scaffolds, the enzymatic digestion occurs via bulk degradation. These observed differences could affect cell behaviour on both scaffolds. Our results suggest that fine-tuning of scaffolds' viscoelastic, physical and bio-degradable properties can maximise cell behaviour in terms of attachment, proliferation and infiltration, which are essential for tissue repair.
Conditional activation and inactivation of genes using the Cre/loxP recombination system is a powerful tool for the analysis of gene function and for tracking cell fate. Here we report a novel silent EGFP reporter mouse line generated by enhancer trap technology using embryonic stem (ES) cells. Following transfection with the silent EGFP reporter construct, positive ES cell clones were treated with Cre recombinase. These "activated clones" were then further selected on the basis of ubiquitous EGFP expression during in vitro differentiation. The parental "silent" clones were then used for generating mice. Upon Cre-mediated activation in ovo tissues tested from these mice express EGFP. Long-term, strong and sustainable expression of EGFP is observed in most myeloid and lymphoid cells. As shown by in vivo transplantation assays, the majority of hematopoietic stem cells (HSCs) and spleen colony-forming units (CFU-S) reside within the EGFP positive fraction. Most in vitro colony-forming units (CFU-Cs) isolated from bone marrow also express EGFP. Thus, these reporter mice are useful for the analysis of Cre-mediated recombination in HSCs and hematopoietic progenitor cells. This, in combination with the high accessibility of the loxP sites, makes these mice a valuable tool for testing cell/tissue-specific Cre-expressing mice. .
This article presents a case study to show the usefulness and importance of using factorial design in tissue engineering and biomaterials science. We used a full factorial experimental design (2 × 2 × 2 × 3) to solve a routine query in every biomaterial research project: the optimisation of cell seeding efficiency for pre-clinical in vitro cell studies, the importance of which is often overlooked. In addition, tissue-engineered scaffolds can be cellularised with relevant cell type(s) to form implantable tissue constructs, where the cell seeding method must be reliable and robust. Our results show the complex relationship between cells and scaffolds and suggest that the optimum seeding conditions for each material may be different due to different material properties, and therefore, should be investigated for individual scaffolds. Our factorial experimental design can be easily translated to other cell types and three-dimensional biomaterials, where multiple interacting variables can be thoroughly investigated for better understanding of cell–biomaterial interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.