Graph representation learning has become a topic of great interest and many works focus on the generation of high-level, task-independent node embeddings for complex networks. However, the existing methods consider only few aspects of networks at a time. In this paper, we propose a novel framework, named , to learn node embeddings for networks that are simultaneously multilayer, heterogeneous and attributed. We leverage contrastive learning as a self-supervised and task-independent machine learning paradigm and define a cross-view mechanism between two views of the original graph which collaboratively supervise each other. We evaluate our framework on the entity classification task. Experimental results demonstrate the effectiveness of and its variant , showing their capability of exploiting across-layer information in addition to other types of knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.