No abstract
BackgroundMutations affecting RNA splicing represent more than 20% of the mutant alleles in Sanfilippo syndrome type C, a rare lysosomal storage disorder that causes severe neurodegeneration. Many of these mutations are localized in the conserved donor or acceptor splice sites, while few are found in the nearby nucleotides.MethodsIn this study we tested several therapeutic approaches specifically designed for different splicing mutations depending on how the mutations affect mRNA processing. For three mutations that affect the donor site (c.234 + 1G > A, c.633 + 1G > A and c.1542 + 4dupA), different modified U1 snRNAs recognizing the mutated donor sites, have been developed in an attempt to rescue the normal splicing process. For another mutation that affects an acceptor splice site (c.372-2A > G) and gives rise to a protein lacking four amino acids, a competitive inhibitor of the HGSNAT protein, glucosamine, was tested as a pharmacological chaperone to correct the aberrant folding and to restore the normal trafficking of the protein to the lysosome.ResultsPartial correction of c.234 + 1G > A mutation was achieved with a modified U1 snRNA that completely matches the splice donor site suggesting that these molecules may have a therapeutic potential for some splicing mutations. Furthermore, the importance of the splice site sequence context is highlighted as a key factor in the success of this type of therapy. Additionally, glucosamine treatment resulted in an increase in the enzymatic activity, indicating a partial recovery of the correct folding.ConclusionsWe have assayed two therapeutic strategies for different splicing mutations with promising results for the future applications.Electronic supplementary materialThe online version of this article (doi:10.1186/s13023-014-0180-y) contains supplementary material, which is available to authorized users.
Abstract:Lysosomal storage diseases are a group of rare genetic disorders characterized by the accumulation of storage molecules in late endosomes/lysosomes. Most of them result from mutations in genes encoding for the catabolic enzymes that ensure intralysosomal digestion. Conventional therapeutic options include enzyme replacement therapy, an approach targeting the functional loss of the enzyme by injection of a recombinant one. Even though this is successful for some diseases, it is mostly effective for peripheral manifestations and has no impact on neuropathology. The development of alternative therapeutic approaches is, therefore, mandatory, and striking innovations including the clinical development of pharmacological chaperones and gene therapy are currently under evaluation. Most of them, however, have the same underlying rationale: an attempt to provide or enhance the activity of the missing enzyme to re-establish substrate metabolism to a level that is consistent with a lack of progression and/or return to health. Here, we will focus on the one approach which has a different underlying principle: substrate reduction therapy (SRT), whose uniqueness relies on the fact that it acts upstream of the enzymatic defect, decreasing storage by downregulating its biosynthetic pathway. Special attention will be given to the most recent advances in the field, introducing the concept of genetic SRT (gSRT), which is based on the use of RNA-degrading technologies (RNA interference and single stranded antisense oligonucleotides) to promote efficient substrate reduction by decreasing its synthesis rate.
This data article contains insights into the methodology used for the analysis of three exonic mutations altering the splicing of the IDS gene: c.241C>T, c.257C>T and c.1122C>T.We have performed splicing assays for the wild-type and mutant minigenes corresponding to these substitutions. In addition, bioinformatic predictions of splicing regulatory sequence elements as well as RNA interference and overexpression experiments were conducted.The interpretation of these data and further extensive experiments into the analysis of these three mutations and also into the methodology applied to correct one of them can be found in “Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II” Matos et al. (2015) [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.