NK cells express different TLRs, such as TLR3, TLR7, and TLR9, but little is known about their role in NK cell stimulation. In this study, we used specific agonists (poly(I:C), loxoribine, and synthetic oligonucleotides containing unmethylated CpG sequences to stimulate human NK cells without or with suboptimal doses of IL-12, IL-15, or IFN-α, and investigated the secretion of IFN-γ, cytotoxicity, and expression of the activating receptor NKG2D. Poly(I:C) and loxoribine, in conjunction with IL-12, but not IL-15, triggered secretion of IFN-γ. Inhibition of IFN-γ secretion by chloroquine suggested that internalization of the TLR agonists was necessary. Also, secretion of IFN-γ was dependent on MEK1/ERK, p38 MAPK, p70S6 kinase, and NF-κB, but not on calcineurin. IFN-α induced a similar effect, but promoted lesser IFN-γ secretion. However, cytotoxicity (51Cr release assays) against MHC class I-chain related A (MICA)− and MICA+ tumor targets remained unchanged, as well as the expression of the NKG2D receptor. Excitingly, IFN-γ secretion was significantly increased when NK cells were stimulated with poly(I:C) or loxoribine and IL-12, and NKG2D engagement was induced by coculture with MICA+ tumor cells in a PI3K-dependent manner. We conclude that resting NK cells secrete high levels of IFN-γ in response to agonists of TLR3 or TLR7 and IL-12, and this effect can be further enhanced by costimulation through NKG2D. Hence, integration of the signaling cascades that involve TLR3, TLR7, IL-12, and NKG2D emerges as a critical step to promote IFN-γ-dependent NK cell-mediated effector functions, which could be a strategy to promote Th1-biased immune responses in pathological situations such as cancer.
Most tumors grow in immunocompetent hosts despite expressing NKG2D ligands (NKG2DLs) such as the MHC class I chain-related genes A and B (MICA/B). However, their participation in tumor cell evasion is still not completely understood. Here we demonstrate that several human melanomas (cell lines and freshly isolated metastases) do not express MICA on the cell surface but have intracellular deposits of this NKG2DL. Susceptibility to NK cell-mediated cytotoxicity correlated with the ratio of NKG2DLs to HLA class I molecules but not with the amounts of MICA on the cell surface of tumor cells. Transfection-mediated overexpression of MICA restored cell surface expression and resulted in an increased in vitro cytotoxicity and IFN-γ secretion by human NK cells. In xenografted nude mice, these melanomas exhibited a delayed growth and extensive in vivo apoptosis. Retardation of tumor growth was due to NK cell-mediated antitumor activity against MICA-transfected tumors, given that this effect was not observed in NK cell-depleted mice. Also, mouse NK cells killed MICA-overexpressing melanomas in vitro. A mechanistic analysis revealed the retention of MICA in the endoplasmic reticulum, an effect that was associated with accumulation of endoH-sensitive (immature) forms of MICA, retrograde transport to the cytoplasm, and degradation by the proteasome. Our study identifies a novel strategy developed by melanoma cells to evade NK cell-mediated immune surveillance based on the intracellular sequestration of immature forms of MICA in the endoplasmic reticulum. Furthermore, this tumor immune escape strategy can be overcome by gene therapy approaches aimed at overexpressing MICA on tumor cells.
The use of a physiological carrier to deliver therapeutics throughout the body to both improve their efficacy while minimising inevitable adverse side effects, is an extremely fascinating perspective. The behaviour of erythrocytes as a delivery system for several classes of molecules (i.e., proteins, including enzymes and peptides, therapeutic agents in the form of nucleotide analogues, glucocorticoid analogues) has been studied extensively as they possess several properties, which make them unique and useful carriers. Furthermore, the possibility of using carrier erythrocytes for selective drug targeting to differentiated macrophages increases the opportunities to treat intracellular pathogens and to develop new drugs. Finally, the availability of an apparatus that permits the encapsulation of drugs into autologous erythrocytes has made this technology available in many clinical settings and competitive with other drug delivery systems.
HDACi are being used as a novel, therapeutic approach for leukemias and other hematological malignancies. However, their effect on immune cells remains ill-defined, as HDACi may impair immune surveillance. In this work, we demonstrate that TSA, VPA, and NaB inhibited IFN-γ production by CD56(dim) and CD56(bright) NK cells and NK cell-mediated cytotoxicity against K562 target cells. HDACi promoted minor NK cell apoptosis but inhibited nuclear mobilization of NF-κB p50, which was accompanied by a robust down-regulation of NKG2D and NKp46 on resting NK cells and of NKG2D, NKp44, NKp46, and CD25 on cytokine-activated NK cells. Decreased CD25 expression promoted a weakened IFN-γ secretion upon restimulation of NK cells with IL-2, whereas reduced expression of NKG2D and NKp46 was accompanied by an impaired NKG2D- and NKp46-dependent cytotoxicity. Moreover, NK cells from normal mice treated in vivo with TSA displayed a diminished expression of NK1.1, NKG2D, and NKp46 and secreted reduced amounts of IFN-γ upon ex vivo stimulation with cytokines. Thus, our preclinical results indicate that HDACi exert deleterious effects on NK cell function, which may weaken immune surveillance and facilitate relapse of the malignant disease in HDACi-treated patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.