Pandemic influenza viruses often cause severe disease in middle-aged adults without preexistent co-morbidities. The mechanism of illness associated with severe disease in this age group is not well understood1–10. Here, we demonstrate preexisting serum antibody that cross-reacts with, but does not protect against 2009 H1N1 influenza virus in middle-aged adults. Non-protective antibody is associated with immune complex(IC)-mediated disease after infection. High titers of serum antibody of low avidity for H1-2009 antigen, and low avidity pulmonary ICs against the same protein were detected in severely ill patients. Moreover, C4d deposition - a sensitive marker of complement activation mediated by ICs- was present in lung sections of fatal cases. Archived lung sections from adults with confirmed fatal influenza 1957 H2N2 infection revealed a similar mechanism of illness. These observations provide a novel biological mechanism for the unusual age distribution of severe cases during influenza pandemics.
This prospective study was carried out to assess the usefulness of five laboratory tests in the diagnosis of hereditary spherocytosis (HS), based on the correlation of erythrocyte membrane protein defects with clinical and laboratory features, and also to determine the membrane protein deficiencies detected in Argentina. Of 116 patients and their family members tested, 62 of them were diagnosed to have HS. The specificity of cryohemolysis (CH) test was 95.2%, and its cut-off value to distinguish HS from normal was 2.8%. For flow cytometry, cut-off points of 17% for mean channel fluorescence (MCF) decrease and 14% coefficient of variation (CV) increase showed 95.9% and 92.2% specificity, respectively. Both tests showed the highest percentages of positive results for diagnosis. Either CH or flow cytometry was positive in 93.5% of patients. In eight patients, flow cytometry was positive only through CV increase. Protein defects were detected in 72.3% of patients; ankyrin and spectrin were the most frequently found deficiencies. The CV of the fluorescence showed significantly higher increases in moderate and severe anemia than in mild anemia (p = 0.003). Severity of anemia showed no other correlation with tests results, type of deficient protein, inheritance pattern, or neonatal jaundice. CH and flow cytometry are easy methods with the highest diagnostic accuracy. Simultaneous reading of mean channel fluorescence (MCF) decrease and CV increase improve diagnostic usefulness of flow cytometry. This test seems to be a reliable predictor of severity. The type of detected protein deficiency has no predictive value for outcome. Predominant ankyrin and spectrin deficiencies agree with reports from other Latin American countries.
Chemiluminescent and respiratory responses were studied in the liver of rats treated with 0.1 mg of triiodothyronine (T3)/kg for 1 to 7 days. Hyperthyroidism resulted in significant increments in the spontaneous chemiluminescence of the in situ liver in animals exhibiting a calorigenic response. Microsomal NADPH-dependent oxygen uptake was enhanced by T3 treatment for 2 days, an effect that was completely abolished by the antioxidant cyanidanol. A similar microsomal antioxidant-sensitive respiratory component was observed in this situation after the addition of t-butyl hydroperoxide (t-BHP). However, basal rates of microsomal oxygen uptake and light emission in liver homogenates and microsomes were decreased by t-BHP, probably related to thyroid hormone-induced diminution in the content of cytochrome P-450 (Fernández et al.) In addition, liver superoxide dismutase and catalase activities as well as the total content of glutathione were depressed by T3. These results indicate that the calorigenic response in the hyperthyroid state is accompanied by the development of an hepatic oxidative stress characterized by enhanced spontaneous chemiluminescence, enhanced NADPH-dependent microsomal respiration and a decreased antioxidant cellular activity.
The characteristics of the visible luminescence that follows the lipid peroxidative process were investigated either in the autoxidation of rat brain homogenates or in the azo-bis-amidinopropane initiated lipid peroxidation of erythrocyte plasma membranes and liver microsomes. In these systems the luminescence decay observed after total inhibition of the lipid peroxidation is not an iron-catalyzed process, and follows a complex kinetics comprising fast and slow components. The slow component of the decay lasts for several hours at 27 degrees C and amounts to nearly half of the total intensity measured prior to the inhibition of the oxidative process by propyl gallate. The addition of thiols (diethyldithiocarbamate, penicillamine or dithiothreitol) to a lipid peroxidizing system inhibits the chain oxidation and catalyzes the dark decomposition of one (or several) of the luminescence precursors, following first order kinetics. The effect of temperature on the slow luminescence decay corresponds to an activation energy of 18.5 kcal/mol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.