As a result of oil hydration, waste is formed – phosphatide concentrate, which is a multicomponent system. Valuable components of the concentrate are vegetable oil and phosphatides, the separation of which is an urgent task for the industry. The process of treatment of sunflower phosphatide concentrate with citric acid (hydration) in order to more completely convert non-hydrated forms of phosphatides into hydrated ones and separate the oil from the concentrate was studied. A feature of the work is the study of the dependence of the yield and mass fraction of moisture in the extracted oil on the hydration process parameters. A sample of phosphatide concentrate with non-standard quality indicators according to SOU 15.4-37-212:2004 (CAS 3436-44-0) was studied: the mass fraction of moisture and volatile substances was 4.0 %, the mass fraction of phosphatides was 37.0 %. The concentrate was treated with citric acid solution at a temperature of 45 °C (10 % solution). Rational conditions for concentrate treatment were determined: duration (25 min) and citric acid concentration in relation to the mass of phosphatide concentrate (25 %). Under these conditions, the oil yield was 76.1 %, the mass fraction of moisture in the oil was 18.6 %. The indicators characterizing the suitability of the oil for consumption and its safety for the body are within the limits (acid value 3.7 mg KOH/g, peroxide value 5.1 ½ O mmol/kg) for the first-grade unrefined unwinterized sunflower oil according to DSTU 4492. Such oil can be used for refining, fatty acids and biodiesel production, and after additional purification – for processing into food products. The results of the study make it possible to use resources rationally and predict the yield and quality of the oil isolated from the phosphatide concentrate. The resulting oil can be an affordable raw material for various industries.
This work research object was fat systems interesterification biotechnology using the Lipozyme TL IM immobilized enzyme preparation. The problem of enzyme preparation activation by moistening with sodium bicarbonate aqueous solution with 7.4 ... 7.7 (3 % wt.) pH was solved in the work. The obtained results made it possible to minimize the interesterification process duration with high-quality product obtaining. The proposed enzyme preparation processing made it possible to reduce the duration of the biointeresterification process in a model fat mixture (palm stearin, coconut and soybean oils in a ratio of 1:1:1, respectively) to 3.5...3.7 hours. The product with high quality indicators, namely up to 0.26 mg KOH/g acid number, up to 0.60 mmol ½ O/kg peroxide number and 1.70 c.u. anisidine number, was obtained as a result. The obtained data can be explained by a fact that effective biocatalysis with lipolytic enzymes as the protein molecules requires the existence of two phases – lipid and water. This fact was provided by the activation parameters justified in the study. The obtained results feature was possibility of enzyme preparation activation, which is not provided under industrial conditions due to the threat of raw materials and finished products hydrolytic processes, which leads to the finished product quality deterioration. The research results made it possible to minimize hydrolytic processes in fat system during interesterification with simultaneous process efficiency increase. From a practical point of view, the discovered activation mechanism made it possible to adjust the enzyme preparation processing conditions in fat systems interesterification technology. The applied aspect of scientific result using was the possibility of improving the typical technological process of fat interesterification
Fatty acids are an important component in the pharmaceutical, food, chemical industries. The production of various types of products requires a certain purity and quality of fatty acids. To obtain these compounds, it is promising to use soapstocks, which are waste products of alkaline refining of oils. The peculiarity of the work lies in determining the effect of the process parameters of soapstock decomposition with sulfuric acid on the saponification number, which is an important production characteristic of fatty acids. The study used sunflower soapstock according to DSTU 5033 (CAS 68952-95-4) with a mass fraction of total fat of 69.5 %, fatty acids – 64.5 %. The soapstock was treated with a sulfuric acid solution at a temperature of 90 °C, the process duration was 40 min. Rational parameters of soapstock treatment were determined: concentration of sulfuric acid in the reaction mass is 80 %, concentration of an aqueous solution of sulfuric acid – 50 %. In the experiment interval, the settling duration of the reaction mass does not affect the saponification number of fatty acids. The settling time of 1 hour is effective for the isolation of fatty acids. Under these conditions, the saponification number of fatty acids was 186.4 mg KOH/g. The acids correspond to fatty acids of the first grade according to DSTU 4860 (CAS 61788-66-7): mass fraction of moisture and volatile substances – 1.2 %, mass fraction of total fat – 97.5 %, cleavage depth – 95.0 % oleic acid. The obtained data allow rational and most efficient use of the reagent – sulfuric acid. The results of the work make it possible to reduce the duration of fatty acids obtaining from soapstocks, since the efficiency of the process with the minimum duration of mass settling has been confirmed. The improved technology of soapstock decomposition makes it possible to obtain a valuable product – high-quality fatty acids under rational conditions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.