We examined the effect of transplantation of allogenic adipose-derived stem cells (ADSCs) with properties of mesenchymal stem cells (MSCs) on posttraumatic sciatic nerve regeneration in rats. We suggested an approach to rat sciatic nerve reconstruction using the nerve from the other leg as a graft. The comparison was that of a critical 10 mm nerve defect repaired by means of autologous nerve grafting versus an identical lesion on the contralateral side. In this experimental model, the same animal acts simultaneously as a test model, and control. Regeneration of the left nerve was enhanced by the use of ADSCs, whereas the right nerve healed under natural conditions. Thus the effects of individual differences were excluded and a result closer to clinical practice obtained. We observed significant destructive changes in the sciatic nerve tissue after surgery which resulted in the formation of combined contractures in knee and ankle joints of both limbs and neurotrophic ulcers only on the right limb. The stimulation of regeneration by ADSCs increased the survival of spinal L5 ganglia neurons by 26.4%, improved sciatic nerve vascularization by 35.68% and increased the number of myelin fibers in the distal nerve by 41.87%. Moreover, we have demonstrated that S100, PMP2, and PMP22 gene expression levels are suppressed in response to trauma as compared to intact animals. We have shown that ADSC-based therapy contributes to significant improvement in the regeneration.
Traumatic injuries of peripheral nerves lead to profound disability in patients with partial or total loss of limb function. There remains the question about the use of technologies for detecting defects of the peripheral nerve with concurrent of its regeneration. In the study it has been investigated the effect of the gene-therapeutic plasmid construct pBud-VEGF165-FGF2 with various methods of overcoming 5 mm diastasis of the sciatic nerve: nerve autograft and tubulation with the NeuraGen® tube. In the study groups, assessment of sciatic nerve regeneration was based on functional and morphometric parameters. Direct injection of plasmid pBud-VEGF165-FGF2 stimulates regeneration and restoration of motor function in both groups, but with different efficacy. Comparative analysis of nerve defect replacement in combination with direct gene therapy showed the most effective approach with autologous insertion replacement by comparison to the NeuraGen. Thus, on the basis of the obtained data, we can assert that nerve autograft of the peripheral nerve remains the "gold standard” and provides the best hope of research in combination with the use of various regeneration stimulants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.