Background Giardia intestinalis is one of the most common diarrhea-related parasites in humans, where infection ranges from asymptomatic to acute or chronic disease. G. intestinalis consists of eight genetically distinct genotypes or assemblages, designated A–H, and assemblages A and B can infect humans. Giardiasis has been classified as a possible zoonotic disease but the role of animals in human disease transmission still needs to be proven. We tried to link different assemblages and sub-assemblages of G. intestinalis isolates from Swedish human patients to clinical symptoms and zoonotic transmission.Methodology/Principal FindingsMultilocus sequence-based genotyping of 207 human Giardia isolates using three gene loci: ß-giardin, glutamate dehydrogenase (gdh), and triose phosphate isomerase (tpi) was combined with assemblage-specific tpi PCRs. This analysis identified 73 patients infected with assemblage A, 128 with assemblage B, and six with mixed assemblages A+B. Multilocus genotypes (MLGs) were easily determined for the assemblage A isolates, and most patients with this genotype had apparently been infected through anthroponotic transmission. However, we also found evidence of limited zoonotic transmission of Giardia in Sweden, since a few domestic human infections involved the same assemblage A MLGs previously reported in Swedish cats and ruminants. Assemblage B was detected more frequently than assemblage A and it was also more common in patients with suspected treatment failure. However, a large genetic variability made determination of assemblage B MLGs problematic. Correlation between symptoms and assemblages was found only for flatulence, which was significantly more common in children less than six years of age infected with assemblage B.Conclusions/SignificanceThis study shows that certain assemblage A subtypes are potentially zoonotic and that flatulence is connected to assemblage B infections in young children. Determination of MLGs from assemblages A and B can be a valuable tool in outbreak situations and to help identify possible zoonotic transmission.
This study describes the epidemiology and symptoms in 271 cryptosporidiosis patients in Stockholm County, Sweden. Species/genotypes were determined by polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) of the Cryptosporidium oocyst wall protein (COWP) and 18S rRNA genes. Species were C. parvum (n=111), C. hominis (n=65), C. meleagridis (n=11), C. felis (n=2), Cryptosporidium chipmunk genotype 1 (n=2), and a recently described species, C. viatorum (n=2). Analysis of the Gp60 gene revealed five C. hominis allele families (Ia, Ib, Id, Ie, If), and four C. parvum allele families (IIa, IIc, IId, IIe). Most C. parvum cases (51%) were infected in Sweden, as opposed to C. hominis cases (26%). Clinical manifestations differed slightly by species. Diarrhoea lasted longer in C. parvum cases compared to C. hominis and C. meleagridis cases. At follow-up 25-36 months after disease onset, 15% of the patients still reported intermittent diarrhoea. In four outbreaks and 13 family clusters, a single subtype was identified, indicating a common infection source, which emphasizes the value of genotyping for epidemiological investigations.
Most human cases of cryptosporidiosis are caused by Cryptosporidium parvum or Cryptosporidium hominis, but the use of molecular diagnostic methods has revealed that several other less common species or genotypes can also be involved. Here, we describe two unusual causes of cryptosporidiosis, one being the recently described species Cryptosporidium viatorum and the other Cryptosporidium chipmunk genotype I. Two Swedish patients who were infected with C. viatorum had travelled to Kenya and Guatemala, respectively, and two others had been infected with Cryptosporidium chipmunk genotype I in Sweden. None of these four patients were immunocompromised, and all four showed classical symptoms of cryptosporidiosis. We performed extensive molecular characterization, including analysis of four loci. The two C. viatorum isolates were found to differ slightly at the 70-kDa heat shock protein locus, which may indicate a local geographical variation in this species that has previously been described exclusively on the Indian subcontinent.
e Malaria predisposes children in areas where malaria is endemic to concurrent bacteremia, often with severe outcomes. The importance of bacterial coinfections in patients diagnosed with malaria in nonendemic settings has, however, not been reported. A retrospective analysis of microbiology data was performed in 755 travelers diagnosed with malaria in Sweden. Bacterial cultures from blood and other locations were correlated to clinical outcome and antibiotic treatment. Blood cultures were drawn from 417 (55%) patients (88% of whom were >15 years old), and bacterial isolates of clinical relevance (Salmonella enterica serovar Enteritidis and Escherichia coli) were detected in 2 patients (0.3%). Cultures from other locations (mainly urine, nasopharyngeal, and fecal samples) were obtained from 44% of the patients with 4.9% positivity. Of the 38 patients given antibiotics, 47% had neither severe malaria nor positive cultures and/or radiology signs indicative of treatment. C-reactive protein levels were associated with bacterial infections but had only a fair predictive value. Bacterial coinfections are uncommon among travelers with malaria. These data suggest a weaker association between malaria and bacteremia than previously described in endemic settings and might indicate different patient populations with different pathophysiological mechanisms and microbial environments. The study supports a restrictive antibiotic policy in returning travelers with malaria.
During May and June 2009 an outbreak of Cyclospora cayetanensis infection involving 12 laboratory-confirmed and 6 probable cases was detected in Stockholm County, Sweden. Imported sugar snap peas from Guatemala were the suspected vehicle, based on information obtained from patient questionnaires. This is the first reported outbreak of cyclosporiasis in Sweden and the second in Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.