We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently “smart” material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues’ biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.
The role of molecular size selectivity in the onset and progression of osteoarthritis (OA), a degenerative disease of the musculoskeletal system and the most common cause of disability in aging adults, is unknown. Here we delivered a mixture of Texas-red (70 kDa), and Rhodamine-green (10 kDa) tagged, dextrans of neutral charge in a single bolus via heart injection to middle aged (8–10 months) and aged (17–19 months) Dunkin-Hartley Guinea pigs, a natural model for OA. We quantified tracer transport in serial-sectioned, cryofixed block specimens after five minutes’ circulation. A remarkable separation of the molecules was observed in serial fluorescent images of whole joint sections. The larger, 70 kDa red tracer was abundant in the marrow cavity albeit less prevalent or absent in the bone, cartilage, meniscus and other tissues of the joint. Tissues of the meniscus, ligament, and tendon exhibited abundant 10 kDa tracer; volumes of tissue containing this molecular tracer were significantly lower in older than in younger animals. Surprisingly, muscle fiber bundles exhibited little fluorescence, while their bounding fasciae fluoresced either red or green. Small caliber channels through the articular cartilage appeared to show a degree of green fluorescence not observed in the surrounding cartilage matrix. This study opens up new avenues for study of musculoskeletal physiology in health and disease as well as new strategies for drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.