ObjectiveTemporal lobe epilepsy (TLE) can be conceptualized as a network disease. However, the network characteristics in lateralization remain controversial.MethodsIn this study, resting-state functional MRI scans were acquired from 53 TLE patients [22 with left-side TLE (LTLE) and 31 with right-side TLE (RTLE)] and 37 matched healthy controls. We focused on the characteristics of static and dynamic functional connectivity, including static connectivity patterns and topological properties, as well as temporal properties of the dynamic connectivity state and the variability of the dynamic connectivity and network topological organization. Correlation analyses were conducted between abnormal static and dynamic properties and cognitive performances.ResultsThe static functional connectivity analysis presented a significantly decreased cortical-cortical connectivity pattern and increased subcortical-cortical connectivity pattern in RTLE. The global-level network in RTLE showed a significant decrease in global efficiency. The dynamic functional connectivity analysis revealed that RTLE patients exhibited aberrant connectivity states, as well as increased variability in the subcortical-cortical connectivity. The global-level network in RTLE revealed increased variance in global efficiency and local efficiency. The static or dynamic functional connectivity in LTLE did not show any significant abnormalities. The altered dynamic properties were associated with worsening cognitive performance in language and conceptual thinking by the TLE patients.ConclusionOur findings demonstrated the presence of abnormalities in the static and dynamic functional connectivity of TLE patients. RTLE patients exhibited more pronounced aberrant connectivity patterns and topological properties, which might represent a mechanism for reconfiguration of brain networks in RTLE patients. These observations extended our understanding of the pathophysiological network mechanisms of TLE.
Background
Temporal lobe epilepsy (TLE) is commonly refractory. Epilepsy surgery is an effective treatment strategy for refractory epilepsy, but patients with a history of focal to bilateral tonic-clonic seizures (FBTCS) have poor outcomes. Previous network studies on epilepsy have found that TLE and idiopathic generalized epilepsy with generalized tonic-clonic seizures (IGE-GTCS) showed altered global and nodal topological properties. Alertness deficits also were found in TLE. However, FBTCS is a common type of seizure in TLE, and the implications for alertness as well as the topological rearrangements associated with this seizure type are not well understood.
Methods
We obtained rs-fMRI data and collected the neuropsychological assessment data from 21 TLE patients with FBTCS (TLE- FBTCS), 18 TLE patients without FBTCS (TLE-non- FBTCS) and 22 controls, and constructed their respective functional brain networks. The topological properties were analyzed using the graph theoretical approach and correlations between altered topological properties and alertness were analyzed.
Results
We found that TLE-FBTCS patients showed more serious impairment in alertness effect, intrinsic alertness and phasic alertness than the patients with TLE-non-FBTCS. They also showed significantly higher small-worldness, normalized clustering coefficient (γ) and a trend of higher global network efficiency (gE) compared to TLE-non-FBTCS patients. The gE showed a significant negative correlation with intrinsic alertness for TLE-non-FBTCS patients.
Conclusion
Our findings show different impairments in brain network information integration, segregation and alertness between the patients with TLE-FBTCS and TLE-non-FBTCS, demonstrating that impairments of the brain network may underlie the disruptions in alertness functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.