RNA molecules transmit the information encoded in the genome and generally reflect its content. Adenosine-to-inosine (A-to-I) RNA editing by ADAR proteins converts a genomically encoded adenosine into inosine. It is known that most RNA editing in human takes place in the primate-specific Alu sequences, but the extent of this phenomenon and its effect on transcriptome diversity are not yet clear. Here, we analyzed large-scale RNA-seq data and detected~1.6 million editing sites. As detection sensitivity increases with sequencing coverage, we performed ultradeep sequencing of selected Alu sequences and showed that the scope of editing is much larger than anticipated. We found that virtually all adenosines within Alu repeats that form double-stranded RNA undergo A-to-I editing, although most sites exhibit editing at only low levels (<1%). Moreover, using high coverage sequencing, we observed editing of transcripts resulting from residual antisense expression, doubling the number of edited sites in the human genome. Based on bioinformatic analyses and deep targeted sequencing, we estimate that there are over 100 million human Alu RNA editing sites, located in the majority of human genes. These findings set the stage for exploring how this primate-specific massive diversification of the transcriptome is utilized.
Genomic mutations in key genes are known to drive tumorigenesis and have been the focus of much attention in recent years. However, genetic content also may change farther downstream. RNA editing alters the mRNA sequence from its genomic blueprint in a dynamic and flexible way. A few isolated cases of editing alterations in cancer have been reported previously. Here, we provide a transcriptome-wide characterization of RNA editing across hundreds of cancer samples from multiple cancer tissues, and we show that A-to-I editing and the enzymes mediating this modification are significantly altered, usually elevated, in most cancer types. Increased editing activity is found to be associated with patient survival. As is the case with somatic mutations in DNA, most of these newly introduced RNA mutations are likely passengers, but a few may serve as drivers that may be novel candidates for therapeutic and diagnostic purposes.
The blind mole rat (BMR), Spalax galili, is an excellent model for studying mammalian adaptation to life underground and medical applications. The BMR spends its entire life underground, protecting itself from predators and climatic fluctuations while challenging it with multiple stressors such as darkness, hypoxia, hypercapnia, energetics and high pathonecity. Here we sequence and analyse the BMR genome and transcriptome, highlighting the possible genomic adaptive responses to the underground stressors. Our results show high rates of RNA/DNA editing, reduced chromosome rearrangements, an over-representation of short interspersed elements (SINEs) probably linked to hypoxia tolerance, degeneration of vision and progression of photoperiodic perception, tolerance to hypercapnia and hypoxia and resistance to cancer. The remarkable traits of the BMR, together with its genomic and transcriptomic information, enhance our understanding of adaptation to extreme environments and will enable the utilization of BMR models for biomedical research in the fight against cancer, stroke and cardiovascular diseases.
Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.
A-to-I RNA editing is apparently the most abundant post-transcriptional modification in primates. Virtually all editing sites reside within the repetitive Alu SINEs. Alu sequences are the dominant repeats in the human genome and thus are likely to pair with neighboring reversely oriented repeats and form double-stranded RNA structures that are bound by ADAR enzymes. Editing levels vary considerably between different adenosine sites within Alu repeats. Part of the variability has been explained by local sequence and structural motifs. Here, we focus on global characteristics that affect the editability at the Alu level. We use large RNA-seq data sets to analyze the editing levels in 203 798 Alu repeats residing within human genes. The most important factor affecting Alu editability is its distance to the closest reversely oriented neighbor—average editability decays exponentially with this distance, with a typical distance of ∼800 bp. This effect alone accounts for 28% of the total variance in editability. In addition, the number of Alu repeats of the same and reverse strand in the genomic vicinity, the expressed strand of the Alu, Alu’s length and subfamily and the occurrence of reversely oriented neighbor in the same intron\exon all contribute, to a lesser extent, to the Alu editability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.