We analyze the computational complexity of several new variants of edge-matching puzzles. First we analyze inequality (instead of equality) constraints between adjacent tiles, proving the problem NP-complete for strict inequalities but polynomial-time solvable for nonstrict inequalities. Second we analyze three types of triangular edge matching, of which one is polynomial-time solvable and the other two are NP-complete; all three are #P-complete. Third we analyze the case where no target shape is specified and we merely want to place the (square) tiles so that edges match exactly; this problem is NP-complete. Fourth we consider four 2-player games based on 1×n edge matching, all four of which are PSPACE-complete. Most of our NP-hardness reductions are parsimonious, newly proving #P and ASP-completeness for, e.g., 1 × n edge matching. Along the way, we prove #P-and ASP-completeness of planar 3-regular directed Hamiltonicity; we provide linear-time algorithms to find antidirected and forbidden-transition Eulerian paths; and we characterize the complexity of new partizan variants of the Geography game on graphs.
We analyze the computational complexity of several new variants of edge-matching puzzles. First we analyze inequality (instead of equality) constraints between adjacent tiles, proving the problem NPcomplete for strict inequalities but polynomial for nonstrict inequalities. Second we analyze three types of triangular edge matching, of which one is polynomial and the other two are NP-complete; all three are #P-complete. Third we analyze the case where no target shape is specified, and we merely want to place the (square) tiles so that edges match (exactly); this problem is NP-complete. Fourth we consider four 2-player games based on 1 × n edge matching, all four of which are PSPACE-complete. Most of our NP-hardness reductions are parsimonious, newly proving #P and ASP-completeness for, e.g., 1 × n edge matching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.