Estradiol acutely facilitates sex differences in striatum-dependent behaviors. However, little is understood regarding the underlying mechanism. In striatal regions in adult rodents, estrogen receptors feature exclusively extranuclear expression, suggesting that estradiol rapidly modulates striatal neurons. We tested the hypothesis that estradiol rapidly modulates excitatory synapse properties onto medium spiny neurons (MSNs) of two striatal regions, the nucleus accumbens core and caudate-putamen in adult female and male rats. We predicted there would be sex-specific differences in pre- and postsynaptic locus and sensitivity. We further analyzed whether MSN intrinsic properties are predictive of estrogen sensitivity. Estradiol exhibited sex-specific acute effects in the nucleus accumbens core: miniature excitatory postsynaptic current (mEPSC) frequency robustly decreased in response to estradiol in female MSNs, and mEPSC amplitude moderately increased in response to estradiol in both male and female MSNs. This increase in mEPSC amplitude is associated with MSNs featuring increased intrinsic excitability. No MSN intrinsic electrical property associated with changes in mEPSC frequency. Estradiol did not acutely modulate mEPSC properties in the caudate-putamen of either sex. This is the first demonstration of acute estradiol action on MSN excitatory synapse function. This demonstration of sex and striatal region-specific acute estradiol neuromodulation revises our understanding of sex hormone action on striatal physiology and resulting behaviors. NEW & NOTEWORTHY This study is the first to demonstrate rapid estradiol neuromodulation of glutamatergic signaling on medium spiny neurons (MSNs), the major output neuron of the striatum. These findings emphasize that sex is a significant biological variable both in MSN sensitivity to estradiol and in pre- and postsynaptic mechanisms of glutamatergic signaling. MSNs in different regions exhibit diverse responses to estradiol. Sex- and region-specific estradiol-induced changes to excitatory signaling on MSNs explain sex differences partially underlying striatum-mediated behaviors and diseases.
The neuropeptide oxytocin (OT) regulates important brain functions including feeding through activating OT receptors in multiple brain areas. Both OT fibers and OT receptors have been reported in the paraventricular thalamus (PVT), an area that was revealed to be important for the control of emotion, motivation, and food intake. However, the function and modulation of PVT OT signaling remain unknown. Here, we used a progressive ratio (PR) schedule of reinforcement to examine the role of PVT OT signaling in regulating the motivation for food and patch-clamp electrophysiology to study the modulation of OT on PVT neurons in brain slices. We demonstrate that PVT OT administration increases active lever presses to earn food rewards in both male and female mice under PR trials and OT receptor antagonist atosiban inhibits OT-induced increase in motivated lever presses. However, intra-PVT OT infusion does not affect food intake in normal conditions but attenuates hypophagia induced by stress and anxiety. Using patch-clamp recordings, we find OT induces long-lasting excitatory effects on neurons in all PVT regions, especially the middle to posterior PVT. OT not only evokes tonic inward currents but also increases the frequency of spontaneous excitatory postsynaptic currents on PVT neurons. The excitatory effect of OT on PVT neurons is mimicked by the specific OT receptor agonist [Thr4, Gly7]oxytocin (TGOT) and blocked by OT receptor antagonist atosiban. Together, our study reveals a critical role of PVT OT signaling in promoting feeding motivation to attenuate stress-induced hypophagia through exciting PVT neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.