Effect of 1-butyl-3-methyl-imidazolium bromide (BmimBr) on the aggregation behavior of PEO-PPO-PEO Pluronic P104 aqueous solution was studied by Fourier transform infrared (FTIR) spectroscopy, freeze fracture transmission electron microscopy (FF-TEM), dynamic light scattering (DLS), and NMR spectroscopy. When the BmimBr concentration was below 1.232 mol/L, the critical micelle temperature (CMT) of Pluronic P104 remained constant, while the size of micelles increased with increasing the BmimBr concentration; above this concentration, the CMT of Pluronic P104 decreased abruptly, and bigger clusters of BmimBr were formed. The selective nuclear Overhauser effect (NOE) spectrum indicates that the PO block of the P104 interacts with the butyl group of the Bmim+ cation by hydrophobic interaction. It suggests that when the concentration of BmimBr is below 1.232 mol/L, there are P104 micelles in the aqueous solution with BmimBr embedding to the micellar core, while above this concentration, P104 micelles and BmimBr clusters coexist in the system.
In this paper we present the effect of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer micelles and their hydrophobicity on the stabilization of gold nanoparticles. Gold nanoparticles were prepared by a method developed by Sakai et al. (Sakai, T.; Alexandridis, P. Langmuir 2004, 20, 8426). An absorption centered at 300-400 nm in time-dependent UV spectra provided evidence that the very first step of the synthesis was to form primary gold clusters. Then the gold clusters grew in size and were stabilized by block copolymer micelles. The stabilization capacities of the micelles were modulated by tuning the block copolymer concentration and composition and by adding salts. With good stabilization, gold particles were spherical and uniform in size with a diameter of 5-10 nm. Otherwise they were aggregates with irregular shapes such as triangular, hexagonal, and rodlike. The presence of a small amount of NaF significantly increased the stabilization capacity of the micelles and consequently modified the quality of the gold particles. Using FTIR and 1H NMR spectroscopy, micellization of the block copolymers and hydrophobicity of the micelles were proven very important for the stabilization. A higher hydrophobicity of the micelle cores was expected to favor the entrapment of primary gold clusters and the stabilization of gold nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.