The effects of Zn and Cu on the thermoelectric properties of ferrite thin films were studied in this paper. The Zn-Cu ferritethin film was fabricated using ink-jet printing method. A minimum of 50 print cycles was required to obtain continuous film with approximately 9 μm thick thin films. The thickness of Zn-Cu ferrite thin films was decreased with increasing sintering temperature from 200 oC (9.21 μm) to 400 oC (5.48 μm). The XRD traces of ZnxCu1-xFe2O4 exhibit as plane reflection for cubic spinel phase of ZnxCu1-xFe2O4 and there were no impurity peaks detected with increasing Zn content and sintering temperature. The electrical conductivity of ZnxCu1-xFe2O4 thin film decreased from 1.18x10-3 S/cm (x=0.0) to 0.48x10-3 S/cm (x=1.0) with increasing Zn content. Positive Seebeck values were observed for all the samples, which indicated the samples were p-type. The Seebeck coefficient of ZnxCu1-xFe2O4 thin film increased from 6.36 μV/K (x=0.0) to 17.46 μV/K (x=1.0) with increasing Zn content.
In this paper, different sintering temperature used to study the influence of temperature on the structural and thermal properties of zinc oxide (ZnO). On this research, the sample was prepared by solid-state method for zinc oxide (ZnO) at different sintering temperature which was 700°C, 800°C and 900°C. It was observed that the density of bulk ZnO that sintering at 900°C had the higher value of density 5.03 g/cm3. The microhardness of the bulk ZnO had a higher measurement 397.3 Hv after sintered at 900°C. ZnO that sintering at 900°C had been observed that had thermal conductivity 1.1611W/cm-K in the sintering temperature range 700°C to 900°C.
This project is focused to study on the cooling performance of liquid cooling system under different process parameter. In this research, a liquid cooling system with copper block that simulates CPU, was setup to identify cooling performance of distilled water and vegetable oil at different mass flow rates (distilled water: 8.00g/s, 10.60g/s & 13.24g/s; vegetable oil: 1.22g/s, 1.30g/s & 1.38g/s) and input power (29.12W & 47.66W). The cooling performance of each fluid was characterized by the properties of: heat transfer coefficient, thermal resistance and also, the maximum CPU temperature (T4 at 66min) for the experiments. Experimental data shows that cooling performance was improved at higher mass flow rate and both distilled water and vegetable oil is a good coolant material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.