Introducing ionic associations is one of the most effective approaches to realize a self-healing behavior for rubbers. However, most of commercial rubbers are nonpolar rubbers without now available functional groups to be converted into ionic groups. In this paper, our strategy was based on a controlled peroxide-induced vulcanization to generate massive ionic cross-links via polymerization of zinc dimethacrylate (ZDMA) in natural rubber (NR) and exploited it as a potential self-healable material. We controlled vulcanization process to retard the formation of covalent cross-link network, and successfully generated a reversible supramolecular network mainly constructed by ionic cross-links. Without the restriction of covalent cross-linkings, the NR chains in ionic supramolecular network had good flexibility and mobility. The nature that the ionic cross-links was easily reconstructed and rearranged facilitating the self-healing behavior, thereby enabling a fully cut sample to rejoin and retain to its original properties after a suitable self-healing process at ambient temperature. This study thus demonstrates a feasible approach to impart an ionic association induced self-healing function to commercial rubbers without ionic functional groups.
Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non‐noble metal catalyst by directly growing a Co‐Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe‐doped CoP (Fe‐CoP) electrocatalyst. The Fe‐CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low overpotentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm−2 current densities in 1.0 m KOH solution. In addition, the Fe‐CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm−2 current density in alkaline solution. Thus, the Fe‐CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm−2 current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO2‐Pt/C‐based electrolyzer.
Rubber composites composed of biobased epoxidized natural rubber and tunicate cellulose nanocrystals exhibited recyclable and self-healable capacities via transesterification reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.