In this paper, a new method is introduced to derive a cochlear transducer function from measuring distortion product otoacoustic emissions (DPOAEs). It is shown that the cubic difference tone (CDT, 2f1-f2) is produced from the odd-order terms of a power series that approximates a nonlinear function characterizing cochlear transduction. Exploring the underlying mathematical formulation, it is found that the CDT is proportional to the third derivative of the transduction function when the primary levels are sufficiently small. DPOAEs were measured from nine gerbils in response to two-tone signals biased by a low-frequency tone with different amplitudes. The CDT magnitude was obtained at the peak regions of the bias tone. The results of the experiment demonstrated that the shape of the CDT magnitudes as a function of bias levels was similar to the absolute value of the third derivative of a sigmoidal function. A second-order Boltzmann function was derived from curve fitting the CDT data with an equation that represents the third derivative of the Boltzmann function. Both the CDT-bias function and the derived nonlinear transducer function showed effects of primary levels. The results of the study indicate that the low-frequency modulated DPOAEs can be used to estimate the cochlear transducer function.
Low-frequency modulation of distortion product otoacoustic emissions (DPOAEs) was measured from the human ears. In the frequency domain, increasing the bias tone level resulted in a suppression of the cubic difference tone (CDT) and an increase in the magnitudes of the modulation sidebands. Higher-frequency bias tones were more efficient in producing the suppression and modulation. Quasi-static modulation patterns were derived from measuring the CDT amplitude at the peaks and troughs of bias tones with various amplitudes. The asymmetric bell-shaped pattern resembled the absolute value of the third derivative of a nonlinear cochlear transducer function. Temporal modulation patterns were obtained from inverse FFT of the spectral contents around the DPOAE. The period modulation pattern, averaged over multiple bias tone cycles, showed two CDT peaks each correlated with the zero-crossings of the bias tone. The typical period modulation pattern varied and the two CDT peaks emerged with the reduction in bias tone level. The present study replicated the previous experimental results in gerbils. This noninvasive technique is capable of revealing the static position and dynamic motion of the cochlear partition. Moreover, the results of the present study suggest that this technique could potentially be applied in the differential diagnosis of cochlear pathologies.
Distortion product otoacoustic emissions (DPOAEs) are generated from the nonlinear transduction n cochlear outer hair cells. The transducer function demonstrating a compressive nonlinearity can be estimated from low-frequency modulation of DPOAEs. Experimental results from the gerbils showed that the magnitude of quadratic difference tone (QDT, f2-f1) was either enhanced or suppressed depending on the phase of the low-frequency bias tone. Within one period of the bias tone, QDT magnitudes exhibited two similar modulation patterns, each resembling the absolute value of the second derivative of the transducer function. In the time domain, the center notches of the modulation patterns occurred around the zero crossings of the bias pressure, whereas peaks corresponded to the increase or decrease in bias pressure. Evaluated with respect to the bias pressure, modulated QDT magnitude displayed a double-modulation pattern marked by a separation of the center notches. Loading/unloading of the cochlear transducer or rise/fall in bias pressure shifted the center notch to positive or negative sound pressures, indicating a mechanical hysteresis. These results suggest that QDT arises from the compression that coexists with the active hysteresis in cochlear transduction. Modulation of QDT magnitude reflects the dynamic regulation of cochlear transducer gain and compression.
Odd-and even-order distortion products ͑DPs͒, evoked by two primary tones ͑f 1 , f 2 , f 1 Ͻ f 2 ͒, represent different aspects of cochlear nonlinearity. The cubic and quadratic difference tones ͑CDT 2f 1 − f 2 and QDT f 2 − f 1 ͒ are prominent representatives of the odd and even DPs. Distortion product otoacoustic emissions ͑DPOAEs͒ were measured within a primary level ͑L 1 , L 2 ͒ space over a wide range of f 2 / f 1 ratios to compare the optimal signal conditions for these DPs. For CDT, the primary level difference decreased as L 1 increased with a rate proportional to the f 2 / f 1 ratio. Moreover, the optimal ratio increased with L 1 . A set of two formulas is proposed to describe the optimal signal conditions. However, for a given level of a primary, increasing the other tone level could maximize the QDT amplitude. The frequency ratio at the maximal QDT was about 1.3 and quite constant across different primary levels. A notch was found in the QDT amplitude at the f 2 / f 1 ratio of about 1.22-1.25. These opposite behaviors suggest that the optimal recording conditions are different for CDT and QDT due to the different aspects in the cochlear nonlinearity. Optimizing the DPOAE recordings could improve the reliability in clinical or research practices.
Biasing of the cochlear partition with a low-frequency tone can produce an amplitude modulation of distortion product otoacoustic emissions (DPOAEs) in gerbils. In the time domain, odd- versus even-order DPOAEs demonstrated different modulation patterns depending on the bias tone phase. In the frequency domain, multiple sidebands are presented on either side of each DPOAE component. These sidebands were located at harmonic multiples of the biasing frequency from the DPOAE component. For odd-order DPOAEs, sidebands at the even-multiples of the biasing frequency were enhanced, while for even-order DPOAEs, the sidebands at the odd-multiples were elevated. When a modulation in DPOAE magnitude was presented, the magnitudes of the sidebands were enhanced and even greater than the DPOAEs. The amplitudes of these sidebands varied with the levels of the bias tone and two primary tones. The results indicate that the maximal amplitude modulations of DPOAEs occur at a confined bias and primary level space. This can provide a guide for optimal selections of signal conditions for better recordings of low-frequency modulated DPOAEs in future research and applications. Spectral fine-structure and its unique relation to the DPOAE modulation pattern may be useful for direct acquisition of cochlear transducer nonlinearity from a simple spectral analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.