The prorenin/renin receptor ((P)RR) is a multifunctional protein that is widely distributed in various organs. Despite intensive research for more than 20 years, this receptor has not been fully characterized. In this study, we generated mice overexpressing the tubular epithelial (P)RR gene ((P)RR-TG mice) to test the previously reported functional role of (P)RR by Ramkumar et al. in 2015 using tubular specific (P)RR KO mice. (P)RR-TG mice were maintained and analyzed in individual metabolic cages and were administered angiotensin II blocker (ARB), direct renin inhibitor (DRI), and bafilomycin, that is, vacuolar ATPase (V-ATPase) antagonist. (P)RR-TG mice were hypertensive and had alkalized urine with lower osmolality and Na+ excretion. ARB and DRI, but not bafilomycin, concurrently decreased blood pressure. Bafilomycin acidized urine of (P)RR-TG mice, or equivalently this phenomenon restored the effect of overexpressed transgene, suggesting that (P)RR functioned as a V-ATPase in renal tubules. Afterall, (P)RR-TG mice were mated with alternative renin transgenic mice (ARen2-TG), which we identified as intracellular renin previously, to generate double transgenic mice (DT-TG). Lethal renal tubular damage was observed in DT-TG mice, suggesting that intracellular renin may be a ligand for (P)RR in tubules. In summary, (P)RR did not substantially affect the tissue renin-angiotensin system (RAS) in our model of tubular specific (P)RR gene over-expression, but alternative intracellular renin may be involved in (P)RR signaling in addition to conventional V-ATPase function. Further investigations are warranted.
Previous clinical studies have suggested that commensal microbiota play an important role in atherosclerotic cardiovascular disease; however, a synthetic analysis of coronary heart disease (CHD) has yet to be performed. Therefore, we aimed to investigate the specific types of commensal microbiota associated with CHD by performing a systematic review of prospective observational studies that have assessed associations between commensal microbiota and CHD. Of the 544 published articles identified in the initial search, 16 publications with data from 16 cohort studies (2210 patients) were included in the analysis. The combined data showed that Bacteroides and Prevotella were commonly identified among nine articles (n = 13) in the fecal samples of patients with CHD, while seven articles commonly identified Firmicutes. Moreover, several types of commensal microbiota were common to atherosclerotic plaque and blood or gut samples in 16 cohort studies. For example, Veillonella, Proteobacteria, and Streptococcus were identified among the plaque and fecal samples, whereas Clostridium was commonly identified among blood and fecal samples of patients with CHD. Collectively, our findings suggest that several types of commensal microbiota are associated with CHD, and their presence may correlate with disease markers of CHD.
To explore the biological and immunological basis of human rheumatoid arthritis and human atherosclerosis, we planned and reported a detailed design and rationale for Orencia Atherosclerosis and Rheumatoid Arthritis Study (ORACLE Arthritis Study) using highly sensitive, high-throughput, human autoantibody measurement methods with cell-free protein synthesis technologies. Our previous study revealed that subjects with atherosclerosis had various autoantibodies in their sera, and the titers of anti-Th2 cytokine antibodies were correlated with the severity of atherosclerosis. Because rheumatoid arthritis is a representative autoimmune disease, we hypothesized that both rheumatoid arthritis and atherosclerosis are commonly developed by autoantibody-mediated autoimmune processes, leading to incessant inflammatory changes in both articular joint tissues and vessel walls. We planned a detailed examination involving carotid artery ultrasonography, measurements of adhesion molecules, such as ICAM-1 (intercellular adhesion molecule 1) and VCAM-1 (vascular cell adhesion molecule 1) for the evaluation of atherosclerosis progression, and high-throughput, high-sensitivity, autoantibody analyses using cell-free technologies, with detailed examinations of the disease activity of rheumatoid arthritis. Analyses of correlations and associations between biological markers and degrees of carotid atherosclerosis over time under consistent conditions may enable us to understand the biological and humoral immunity background of human atherosclerosis and autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.