Rheumatoid arthritis (RA) is characterized by the accumulation of CD4+ memory T cells in the inflamed synovium. To address the mechanism, we analyzed chemokine receptor expression and found that the frequency of CXC chemokine receptor (CXCR)4 expressing synovial tissue CD4+ memory T cells was significantly elevated. CXCR4 expression could be enhanced by IL-15, whereas stromal cell-derived factor (SDF)-1, the ligand of CXCR4, was expressed in the RA synovium and could be increased by CD40 stimulation. SDF-1 stimulated migration of rheumatoid synovial T cells and also inhibited activation-induced apoptosis of T cells. These results indicate that SDF-1-CXCR4 interactions play important roles in CD4+ memory T cell accumulation in the RA synovium, and emphasize the role of stromal cells in regulating rheumatoid inflammation.
Stromal cell-derived factor (SDF)-1 is a chemoattractant for T cells, precursor B cells, monocytes, and neutrophils. SDF-1α was also found to up-regulate expression of early activation markers (CD69, CD25, and CD154) by anti-CD3-activated CD4+ T cells. In addition, SDF-1α costimulated proliferation of CD4+ T cells and production of IL-2, IFN-γ, IL-4, and IL-10. Stimulation with SDF-1α alone did not induce activation marker expression, proliferation, or cytokine production by the CD4+ T cells. SDF-1α-mediated costimulation was blocked by anti-CXC chemokine receptor-4 mAb. RANTES also increased activation marker expression by anti-CD3-stimulated peripheral CD4+ T cells, but less effectively than SDF-1α did, and did not up-regulate IL-2 production and proliferation. These results indicate that SDF-1 and CXC chemokine receptor-4 interactions not only play a role in T cell migration but also provide potent costimulatory signals to Ag-stimulated T cells.
Rheumatoid arthritis (RA) is characterized by proliferation of synoviocytes that produce inflammatory cytokines and chemokines. The expressed chemokines are thought to be involved in the migration of inflammatory cells into the synovium. In this study we show that CCL2/monocyte chemotactic protein-1, CCL5/RANTES, and CXCL12/stromal cell-derived factor-1 enhanced IL-6 and IL-8 production by fibroblast-like synoviocytes (FLS) from patients with RA, and their corresponding receptors, CCR2, CCR5, and CXCR4, respectively, were expressed by RA FLS. The chemokines stimulated RA FLS more effectively than skin fibroblasts. Culture with CCL2 enhanced phosphorylation of extracellular signal-related kinase 1 (ERK1) and ERK2, but not phosphorylation of p38 or Src. Moreover, activation of ERK1/2 was inhibited by pertussis toxin, a Gi-coupled protein inhibitor, and RS-504393, CCR2 antagonist, suggesting that ERK1/2 was activated by CCL2 via CCR2 and Gi-coupled protein. On the other hand, CCL2, CCL5, and CXCL12 were expressed on RA FLS, and their production was regulated by TNF-α, IL-1β, and TGF-β1. Our results indicate that the chemokines not only play a role in inflammatory cell migration, but are also involved in the activation of FLS in RA synovium, possibly in an autocrine or paracrine manner.
IntroductionDisturbances in peripheral blood memory B cell subpopulations have been observed in various autoimmune diseases, but have not been fully delineated in rheumatoid arthritis (RA). Additionally, the possible role of tumour necrosis factor (TNF) in regulating changes in specific peripheral blood memory B cell subsets in RA is still unclear.MethodsThe frequency and distribution of B cell subsets in the peripheral blood and synovial membrane of active RA patients with long-standing disease have been analysed. Additionally, the possible role of TNF in causing disturbances in memory B cell subsets in RA patients was assessed in a clinical trial with the specific TNF-neutralising antibody, infliximab.ResultsRA patients, independent of disease duration, have a significantly lower frequency of peripheral blood pre-switch IgD+CD27+ memory B cells than healthy individuals, whereas post-switch IgD-CD27+ accumulate with increased disease duration. Notably, both pre-switch IgD+CD27+ and post-switch IgD-CD27+ memory B cells accumulate in the synovial membrane of RA patients. Finally, anti-TNF therapy increased the frequency of pre-switch IgD+CD27 memory B cells in the peripheral blood.ConclusionsThe data suggest that decreases in peripheral blood IgD+CD27+ pre-switch memory B cells in RA reflect their accumulation in the synovial tissue. Moreover, the significant increase in the peripheral blood pre-switch memory B cells in patients who underwent specific TNF-blockade with infliximab indicates that trafficking of memory B cells into inflamed tissue in RA patients is regulated by TNF and can be corrected by neutralising TNF.
Objective. Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with massive T cell infiltration into the synovium. The accumulated T cells express type 1 cytokines, such as interferon-␥ (IFN␥) and tumor necrosis factor ␣, and activated markers of inflammation, such as CD154 and inducible costimulator (ICOS). It is thought that chemokines contribute to T cell accumulation in the synovium. In this study, we examined the role of CXCL16 and CXCR6 in T cell migration and stimulation in RA synovium.Methods. Expression of CXCL16 and CXCR6 was analyzed by immunohistochemistry, reverse transcription-polymerase chain reaction, Western blotting, and/or flow cytometry. Migration activity was assessed using a chemotaxis chamber. IFN␥ production was analyzed by enzyme-linked immunosorbent assay. The effect of anti-CXCL16 monoclonal antibody on murine collagen-induced arthritis (CIA) was evaluated.Results. CXCL16 was expressed in RA synovium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.