Activation of p53 tumor suppressor by antagonizing its negative regulator murine double minute (MDM)2 has been considered an attractive strategy for cancer therapy and several classes of p53-MDM2 binding inhibitors have been developed. However, these compounds do not inhibit the p53-MDMX interaction, and their effectiveness can be compromised in tumors overexpressing MDMX. Here, we identify small molecules that potently block p53 binding with both MDM2 and MDMX by inhibitor-driven homo-and/or heterodimerization of MDM2 and MDMX proteins. Structural studies revealed that the inhibitors bind into and occlude the p53 pockets of MDM2 and MDMX by inducing the formation of dimeric protein complexes kept together by a dimeric small-molecule core. This mode of action effectively stabilized p53 and activated p53 signaling in cancer cells, leading to cell cycle arrest and apoptosis. Dual MDM2/MDMX antagonists restored p53 apoptotic activity in the presence of high levels of MDMX and may offer a more effective therapeutic modality for MDMXoverexpressing cancers.T he tumor suppressor p53 is a powerful growth-suppressive and proapoptotic protein tightly controlled by its negative regulators: murine double minute (MDM)2 and MDMX (1, 2). These proteins bind p53 with their structurally similar N-terminal domains and effectively inhibit p53 transcriptional activity (1, 3). They both possess a RING (really interesting new gene) domain in their C termini, but it is only functional in MDM2, which serves as a specific E3 ligase and main regulator of p53 stability (4, 5). Despite its RING domain, MDMX does not have an intrinsic ligase activity and does not affect directly p53 stability (6). However, MDMX can enhance ligase activity of MDM2 toward p53 by forming MDM2/MDMX heterodimers (7,8). It has been reported that the MDM2/MDMX complex is responsible for polyubiquitination of p53, whereas MDM2 alone primarily induces monoubiquitination (9). Targeted disruption of MDM2/MDMX heterocomplexes is embryonic-lethal in mice, suggesting that complex formation is essential for p53 regulation in vivo (10). On the other hand, MDM2 can also ubiquitinate MDMX and is, therefore, responsible for its stability as well (11,12). MDM2 is a transcriptional target of p53, and both proteins form an autoregulatory feedback loop by which they mutually control their cellular levels (13).The functional relationship between MDM2 and MDMX is still being refined at the molecular level, but it is well established that these two negative regulators play a critical role in controlling p53 tumor-suppressor function in normal cells (2,14). This is why they are frequently overproduced through gene amplification and/or overexpression in tumors that retain wildtype p53 (14). Therefore, antagonizing the binding of MDM2 and MDMX to p53 is expected to restore p53 function and may offer a strategy for cancer therapy (15). Recently identified small-molecule inhibitors of the p53-MDM2 interaction have validated this approach, and the first pharmacological MDM2 antagonists ar...
Non-coding RNAs represent a majority of the human transcriptome. However, less is known about the functions and regulatory mechanisms of most non-coding species. Moreover, little is known about the potential non-coding functions of coding RNAs. The competing endogenous RNAs (ceRNAs) hypothesis is proposed recently. This hypothesis describes potential communication networks among all transcript RNA species mediated by miRNAs and miRNA-recognizing elements (MREs) within RNA transcripts. Here we review the evolution of the ceRNA hypothesis, summarize the validation experiments and discusses the significance and perspectives of this hypothesis in human cancer.
MicroRNAs (miRNAs) have attracted attention because of their key regulatory functions in many biological events, including differentiation and tumorigenesis. Recent studies have reported the existence of a reciprocal regulatory loop between the family of let-7 miRNAs and an RNA-binding protein, Lin28, both of which have been documented for their important roles during cell differentiation. Hence, using bipotent K562 human leukemia cells and human CD34 þ hematopoietic progenitor cells as research models, we demonstrate that let-7 and Lin28 have contrary roles in megakaryocytic (MK) differentiation with a dynamic balance; expression of miR-181 is capable of effectively repressing Lin28 expression, disrupting the Lin28-let-7 reciprocal regulatory loop, upregulating let-7, and eventually promoting MK differentiation. However, miR-181 lacks a significant effect on hemin-induced erythrocyte differentiation. These results demonstrate that miR-181 can function as a 'molecular switch' during hematopoietic lineage progression specific to MK differentiation, thus providing insight into future development of miRNA-oriented therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.