A large percentage of redox-responsive gene promoters contain evolutionarily conserved guanine-rich clusters; guanines are the bases most susceptible to oxidative modification(s). Consequently, 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the most abundant base lesions in promoters and is primarily repaired via the 8-oxoguanine DNA glycosylase-1 (OOG1)-initiated base excision repair pathway. In view of a prompt cellular response to oxidative challenge, we hypothesized that the 8-oxoG lesion and the cognate repair protein OGG1 are utilized in transcriptional gene activation. Here, we document TNFα-induced enrichment of both 8-oxoG and OGG1 in promoters of pro-inflammatory genes, which precedes interaction of NF-κB with its DNA-binding motif. OGG1 bound to 8-oxoG upstream from the NF-κB motif increased its DNA occupancy by promoting an on-rate of both homodimeric and heterodimeric forms of NF-κB. OGG1 depletion decreased both NF-κB binding and gene expression, whereas Nei-like glycosylase-1 and -2 had a marginal effect. These results are the first to document a novel paradigm wherein the DNA repair protein OGG1 bound to its substrate is coupled to DNA occupancy of NF-κB and functions in epigenetic regulation of gene expression.
Beclin 1 was originally identified as a novel Bcl-2-interacting protein, but co-immunoprecipitation studies suggest that the major physiological partner for Beclin 1 is the mammalian class III phosphatidylinositol 3-kinase (PI 3-kinase) Vps34. Beclin 1 has been proposed to function as a tumor suppressor by promoting cellular macroautophagy, a process that is known to depend on Vps34. However, an alternative role for Beclin 1 in modulating normal Vps34-dependent protein trafficking pathways has not been ruled out. This possibility was examined in U-251 glioblastoma cells. Immunoprecipitates of endogenous Beclin 1 contained human Vps34 (hVps34), but not Bcl-2. Suppression of Beclin 1 expression by short interfering (si)RNA-mediated gene silencing blunted the autophagic response of the cells to nutrient deprivation or C2-ceramide. However, other PI 3-kinase-dependent trafficking pathways, such as the post-endocytic sorting of the epidermal growth factor receptor (EGFR) or the proteolytic processing of procathepsin D en route from the trans-Golgi network (TGN) to lysosomes, were not affected. Depletion of Beclin 1 did not reduce endocytic internalization of a fluid phase marker (horseradish peroxidase, HRP) or cause swelling of late endosomal compartments typically seen in cells where the function of hVps34 is impaired. These findings argue against a role for Beclin 1 as an essential chaperone or adaptor for hVps34 in normal vesicular trafficking, and they support the hypothesis that Beclin 1 functions mainly to engage hVps34 in the autophagic pathway.
Among the insidious DNA base lesions, 8-oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant, a lesion that arises through the attack by reactive oxygen species on guanine, especially when located in cis-regulatory elements. 8-oxoG is repaired by the 8-oxoguanine glycosylase 1 (OGG1)-initiated DNA base excision repair (BER) pathway. Here we investigated whether 8-oxoG repair by OGG1 in promoter regions is compatible with a prompt gene expression and a host innate immune response. For this purpose, we utilized a mouse model of airway inflammation, supplemented with cell cultures, chromatin immunoprecipitation, siRNA knockdown, real-time PCR, Comet and reporter transcription assays. Our data show that exposure of cells to tumor necrosis factor alpha (TNF-α) altered cellular redox, increased the 8-oxoG level in DNA, recruited OGG1 to promoter sequences and transiently inhibited BER of 8-oxoG. Promoter-associated OGG1 then enhanced NF-êB/RelA binding to cis-elements and facilitated recruitment of Specificity Protein 1 (SP1), transcription initiation factor II-D (TFIID), and phospho-RNA polymerase II, resulting in the rapid expression of chemokines/cytokines and inflammatory cell accumulation in mouse airways. siRNA depletion of OGG1 or prevention of guanine oxidation significantly decreased TNF-α-induced inflammatory responses. Together, these results show that non-productive binding of OGG1 to 8-oxoG in promoter sequences could be an epigenetic mechanism to modulate gene expression for a prompt innate immune response.
Histamine is a potent mediator of inflammation and a regulator of innate and adaptive immune responses. However, the influence of histamine on microglia, the resident immune cells in the brain, remains uninvestigated. In the present study, we found that microglia can constitutively express all four histamine receptors (H1R, H2R, H3R, and H4R), and the expression of H1R and H4R can be selectively upregulated in primary cultured microglia in a dose-dependent manner by histamine. Histamine can also dose-dependently stimulate microglia activation and subsequently production of proinflammatory factors tumor necrosis factor (TNF)-alpha and interleukin-6 (IL-6). The antagonists of H1R and H4R but not H2R and H3R reduced histamine-induced TNF-alpha and IL-6 production, MAPK and PI3K/AKT pathway activation, and mitochondrial membrane potential loss in microglia, suggesting that the actions of histamine are via H1R and H4R. On the other hand, inhibitors of JNK, p38, or PI3K suppressed histamine-induced TNF-alpha and IL-6 release from microglia. Histamine also activated NF-kappa B and ammonium pyrrolidinedithiocarbamate, an inhibitor of NF-kappa B, and reduced histamine-induced TNF-alpha and IL-6 release. In summary, the present study identifies the expression of histamine receptors on microglia. We also demonstrate that histamine induced TNF-alpha and IL-6 release from activated microglia via H1R and H4R-MAPK and PI3K/AKT-NF-kappa B signaling pathway, which will deepen the understanding of microglia-mediated neuroinflammatory symptoms of chronic neurodegenerative disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.