Natural medicines were the only option for the prevention and treatment of human diseases for thousands of years. Natural products are important sources for drug development. The amounts of bioactive natural products in natural medicines are always fairly low. Today, it is very crucial to develop effective and selective methods for the extraction and isolation of those bioactive natural products. This paper intends to provide a comprehensive view of a variety of methods used in the extraction and isolation of natural products. This paper also presents the advantage, disadvantage and practical examples of conventional and modern techniques involved in natural products research.
Environmental exposure, endogenous metabolism and cancer chemotherapy can give rise to alkylation of DNA, and the resulting alkylated thymidine (alkyldT) lesions were found to be poorly repaired and persistent in mammalian tissues. Unrepaired DNA lesions may compromise genomic integrity by inhibiting DNA replication and inducing mutations in these processes. In this study, we explored how eight O4-alkyldT lesions, with the alkyl group being a Me, Et, nPr, iPr, nBu, iBu, (R)-sBu and (S)-sBu, are recognized by DNA replication machinery in HEK293T human embryonic kidney cells. We found that the O4-alkyldT lesions are moderately blocking to DNA replication, with the bypass efficiencies ranging from 20 to 33% in HEK293T cells, and these lesions induced substantial frequencies T→C transition mutation. We also conducted the replication experiments in the isogenic cells where individual translesion synthesis (TLS) DNA polymerases were depleted by the CRISPR/Cas9 genome editing method. Our results showed that deficiency in Pol η or Pol ζ, but not Pol κ or Pol ι, led to pronounced drops in bypass efficiencies for all the O4-alkyldT lesions except O4-MedT. In addition, depletion of Pol ζ resulted in significant decreases in T→C mutation frequencies for all the O4-alkyldT lesions except O4-MedT and O4-nBudT. Thus, our study provided important new knowledge about the cytotoxic and mutagenic properties of the O4-alkyldT lesions and defined the roles of TLS polymerases in bypassing these lesions in human cells.
Demyelinating diseases, such as multiple sclerosis, are known to result from acute or chronic injury to the myelin sheath and inadequate remyelination; however, the underlying molecular mechanisms remain unclear. Here, we performed genome occupancy analysis by chromatin immunoprecipitation sequencing in oligodendrocytes in response to lysolecithin-induced injury and found that Olig2 and its downstream target Gpr17 are critical factors in regulating oligodendrocyte survival. After injury to oligodendrocytes, Olig2 was significantly upregulated and transcriptionally targeted the Gpr17 locus. Gpr17 activation inhibited oligodendrocyte survival by reducing the intracellular cAMP level and inducing expression of the pro-apoptotic gene Xaf1. The protein kinase A signaling pathway and the transcription factor c-Fos mediated the regulatory effects of Gpr17 in oligodendrocytes. We showed that Gpr17 inhibition elevated Epac1 expression and promoted oligodendrocyte differentiation. The loss of Gpr17, either globally or specifically in oligodendrocytes, led to an earlier onset of remyelination after myelin injury in mice. Similarly, pharmacological inhibition of Gpr17 with pranlukast promoted remyelination. Our findings indicate that Gpr17, an Olig2 transcriptional target, is activated after injury to oligodendrocytes and that targeted inhibition of Gpr17 promotes oligodendrocyte remyelination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.