Demyelinating diseases, such as multiple sclerosis, are known to result from acute or chronic injury to the myelin sheath and inadequate remyelination; however, the underlying molecular mechanisms remain unclear. Here, we performed genome occupancy analysis by chromatin immunoprecipitation sequencing in oligodendrocytes in response to lysolecithin-induced injury and found that Olig2 and its downstream target Gpr17 are critical factors in regulating oligodendrocyte survival. After injury to oligodendrocytes, Olig2 was significantly upregulated and transcriptionally targeted the Gpr17 locus. Gpr17 activation inhibited oligodendrocyte survival by reducing the intracellular cAMP level and inducing expression of the pro-apoptotic gene Xaf1. The protein kinase A signaling pathway and the transcription factor c-Fos mediated the regulatory effects of Gpr17 in oligodendrocytes. We showed that Gpr17 inhibition elevated Epac1 expression and promoted oligodendrocyte differentiation. The loss of Gpr17, either globally or specifically in oligodendrocytes, led to an earlier onset of remyelination after myelin injury in mice. Similarly, pharmacological inhibition of Gpr17 with pranlukast promoted remyelination. Our findings indicate that Gpr17, an Olig2 transcriptional target, is activated after injury to oligodendrocytes and that targeted inhibition of Gpr17 promotes oligodendrocyte remyelination.
The high aqueous solubility, poor permeability, and absorption of berberine (BBR) result in its low plasma level after oral administration, which greatly limits its clinical application. BBR solid lipid nanoparticles (SLNs) were prepared to achieve improved bioavailability and prolonged effect. Developed SLNs showed homogeneous spherical shapes, small size (76.8 nm), zeta potential (7.87 mV), encapsulation efficiency (58%), and drug loading (4.2%). The power of X-ray diffraction combined with 1 H nuclear magnetic resonance spectroscopy was employed to analyze chemical functional groups and the microstructure of BBR-SLNs, and indicated that the drug was wrapped in a lipid carrier. Single dose (50 mg/kg) oral pharmacokinetic studies in rats showed significant improvement ( P <0.05) in the peak plasma concentration, area under the curve, and variance of mean residence time of BBR-SLNs when compared to BBR alone ( P <0.05), suggesting improved bioavailability. Furthermore, oral administration of both BBR and BBR-SLNs significantly suppressed body weight gain, fasting blood glucose levels, and homeostasis assessment of insulin resistance, and ameliorated impaired glucose tolerance and insulin tolerance in db/db diabetic mice. BBR-SLNs at high dose (100 mg/kg) showed more potent effects when compared to an equivalent dose of BBR. Morphologic analysis demonstrated that BBR-SLNs potentially promoted islet function and protected the islet from regeneration. In conclusion, our study demonstrates that by entrapping BBR into SLNs the absorption of BBR and its anti-diabetic action were effectively enhanced.
SUMMARY The CNS plays a pivotal role in energy homeostasis, but whether oligodendrocytes are involved has been largely unexplored. Here, we show that signaling through GPR17, a G-protein-coupled receptor predominantly expressed in the oligodendrocyte lineage, regulates food intake by modulating hypothalamic neuronal activities. GPR17 -null mice and mice with an oligodendrocyte-specific knockout of GPR17 have lean phenotypes on a high-fat diet, suggesting that GPR17 regulates body weight by way of oligodendrocytes. Downregulation of GPR17 results in activation of cAMP-protein kinase A (PKA) signaling in oligodendrocytes and upregulated expression of pyruvate dehydrogenase kinase 1 (PDK1), which promotes lactate production. Elevation of lactate activates AKT and STAT3 signaling in the hypothalamic neurons, leading to increased expression of Pomc and suppression of Agrp . Our findings uncover a critical role of oligodendrocytes in metabolic homeostasis, where GPR17 modulates the production of lactate, which, in turn, acts as a metabolic signal to regulate neuronal activity.
The nuclear receptor liver X receptor (LXR) is a ligand-dependent transcription factor that plays an important role in the metabolism and homeostasis of cholesterol, lipids, bile acids, and steroid hormones. MicroRNAs (miRNAs) are recently recognized important negative regulators of gene expression. In this report, we showed that miRNA hsa-miR-613 played an important role in the autoregulation of the human LXRα gene. hsa-miR-613 targeted the endogenous LXRα through its specific miRNA response element (613MRE) within the LXRα 3'-untranslated region. Interestingly and paradoxically, the expression of hsa-miR-613 itself was induced upon the activation of LXR. However, hsa-miR-613 did not appear to be a direct LXR target gene. Instead, the positive regulation of hsa-miR-613 by LXR was mediated by the sterol regulatory element binding protein (SREBP)-1c, a known LXR target gene. Promoter analysis revealed an SREBP response element in the hsa-miR-613 gene promoter. Treatment with insulin also induced the expression of hsa-miR-613 in an SREBP-1c-dependent manner, further supporting the role of SREBP-1c in the positive regulation of this miRNA species. Finally, the autoinduction of LXRα by a LXR agonist was enhanced when hsa-miR-613 was inhibited or SREBP-1c was down-regulated. hsa-miR-613 appeared to specifically target the human LXRα. We propose that the negative regulation mediated by hsa-miR-613 and SREBP-1c and the previously reported positive regulation mediated by an LXR response element in the LXRα gene promoter constitute a ying-yang mechanism to ensure a tight regulation of this nuclear receptor of many metabolic functions.
The androgen-androgen receptor signaling pathway plays an important role in the pathogenesis of prostate cancer. Accordingly, androgen deprivation has been the most effective endocrine therapy for hormone-dependent prostate cancer. Here, we report a novel pregnane X receptor (PXR)-mediated and metabolism-based mechanism to reduce androgenic tone. PXR is a nuclear receptor previously known as a xenobiotic receptor regulating the expression of drug metabolizing enzymes and transporters. We showed that genetic (using a PXR transgene) or pharmacological (using a PXR agonist) activation of PXR lowered androgenic activity and inhibited androgen-dependent prostate regeneration in castrated male mice that received daily injections of testosterone propionate by inducing the expression of cytochrome P450 (CYP)3As and hydroxysteroid sulfotransferase (SULT)2A1, which are enzymes important for the metabolic deactivation of androgens. In human prostate cancer cells, treatment with the PXR agonist rifampicin (RIF) inhibited androgen-dependent proliferation of LAPC-4 cells but had little effect on the growth of the androgen-independent isogenic LA99 cells. Down-regulation of PXR or SULT2A1 in LAPC-4 cells by short hairpin RNA or small interfering RNA abolished the RIF effect, indicating that the inhibitory effect of RIF on androgens was PXR and SULT2A1 dependent. In summary, we have uncovered a novel function of PXR in androgen homeostasis. PXR may represent a novel therapeutic target to lower androgen activity and may aid in the treatment and prevention of hormone-dependent prostate cancer. (Endocrinology 151: 5721-5729, 2010) P rostate cancer is the most common malignancy diagnosed in American men and the second leading cause of male cancer mortality (1). In the 1940s, Charles Huggins found that metastatic prostate cancer responded to androgen deprivation therapy (ADT) (2), which has since become the mainstay of treatment for locally advanced and metastatic prostate cancer.The ADT strategies in prostate cancer patients include orchiectomy and the use of GnRH (also known as LHRH) agonists or antagonists, steroidal and nonsteroidal antiandrogens, and inhibitors for the 5␣-reductase (3). Orchiectomy is a simple surgical procedure, but it has fallen out of favor given its psychological impact and viable medical alternatives for androgen deprivation (4). GnRH agonist therapy is widely used as a medical and reversible castration. GnRH agonists induce a transient increase in plasma testosterone (T) levels during the first week of treatment, causing a "flare" reaction in prostate cancer patients (5). GnRH antagonists do not cause a T surge, but they could be associated with an enhanced risk of ana-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.