With the fast development of the Internet of Things (IoT) technology, normal people and organizations can produce massive data every day. Due to a lack of data mining expertise and computation resources, most of them choose to use data mining services. Unfortunately, directly sending query data to the cloud may violate their privacy. In this work, we mainly consider designing a scheme that enables the cloud to provide an efficient privacy-preserving decision tree evaluation service for resource-constrained clients in the IoT. To design such a scheme, a new secure comparison protocol based on additive secret sharing technology is proposed in a two-cloud model. Then we introduce our privacy-preserving decision tree evaluation scheme which is designed by the secret sharing technology and additively homomorphic cryptosystem. In this scheme, the cloud learns nothing of the query data and classification results, and the client has no idea of the tree. Moreover, this scheme also supports offline users. Theoretical analyses and experimental results show that our scheme is very efficient. Compared with the state-of-art work, both the communication and computational overheads of the newly designed scheme are smaller when dealing with deep but sparse trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.