A novel analytical method to design a highly selective and sensitive detection technique for lead(II) ions (Pb(2+)) detection was developed based on an electrochemiluminescence (ECL) sensor, taking advantage of the high specificity of the aptamer for Pb(2+) and the use of both intermolecular and intramolecular co-reaction to achieve signal enhancement. For sensing interface construction, L-cysteine (Cys) and gold nanostructured layers were electrodeposited on the electrode surface successively, which afforded a large surface area to anchor massive thiol-terminated auxiliary probes (APs) via a thiol-Au interaction. Then, a DNA duplex was generated based on the hybridization of the APs with capture probes (CPs, Pb(2+) specific aptamers). In the presence of Pb(2+), Pb(2+)-induced aptamers were released from the DNA duplex via the formation of a Pb(2+)-stabilized G-quadruplex, accompanied by leaving the single CPs on the sensing interface. Herein, the ruthenium(ii) complexes with functional groups of -COOH (Ru-COOH) were covalently bonded on the polyamidoamine dendrimers with amine end groups (PAMAM), which were capped by the high-index-faceted Au nanoparticles (HIFAuNPs) to obtain the ECL signal labels of Ru-PAMAM-HIFAuNPs. Then, the detection probes (DPs) of amino-terminated Pb(2+) specific aptamers were tagged with the Ru-PAMAM-HIFAuNPs. It was demonstrated that the covalent bonding of PAMAM and Ru-COOH could generate a self-enhanced ECL luminophore by an intramolecular co-reaction and the use of a Cys layer modified electrode could enhance the ECL by the intermolecular co-reaction of Cys and Ru-COOH, which lead to a significant enhancement of the ECL response. Based on this analytical method, the ECL signal increased with Pb(2+) concentration which presented a linear relationship in the range 1.0 × 10(-13)-1.0 × 10(-7) M with the detection limit of 4.0 × 10(-14) M. The proposed approach was also successfully utilized for the determination of Pb(2+) in soil samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.