We consider a stochastic model for distributed average consensus, which arises in applications such as load balancing for parallel processors, distributed coordination of mobile autonomous agents, and network synchronization. In this model, each node updates its local variable with a weighted average of its neighbors' values, and each new value is corrupted by an additive noise with zero mean. The quality of consensus can be measured by the total mean-square deviation of the individual variables from their average, which converges to a steady-state value. We consider the problem of finding the (symmetric) edge weights that result in the least mean-square deviation in steady state. We show that this problem can be cast as a convex optimization problem, so the global solution can be found efficiently. We describe some computational methods for solving this problem, and compare the weights and the mean-square deviations obtained by this method and several other weight design methods.
We consider a symmetric random walk on a connected graph, where each edge is labeled with the probability of transition between the two adjacent vertices. The associated Markov chain has a uniform equilibrium distribution; the rate of convergence to this distribution, i.e., the mixing rate of the Markov chain, is determined by the second largest (in magnitude) eigenvalue of the transition matrix. In this paper we address the problem of assigning probabilities to the edges of the graph in such a way as to minimize the second largest magnitude eigenvalue, i.e., the problem of finding the fastest mixing Markov chain on the graph.We show that this problem can be formulated as a convex optimization problem, which can in turn be expressed as a semidefinite program (SDP). This allows us to easily compute the (globally) fastest mixing Markov chain for any graph with a modest number of edges (say, 1000) using standard numerical methods for SDPs. Larger problems can be solved by exploiting various types of symmetry and structure in the problem, and far larger problems (say 100000 edges) can be solved using a subgradient method we describe. We compare the fastest mixing Markov chain to those obtained using two commonly used heuristics: the maximum-degree method, and the Metropolis-Hastings algorithm. For many of the examples considered, the fastest mixing Markov chain is substantially faster than those obtained using these heuristic methods.We derive the Lagrange dual of the fastest mixing Markov chain problem, which gives a sophisticated method for obtaining (arbitrarily good) bounds on the optimal mixing rate, as well the optimality conditions. Finally, we describe various extensions of the method, including a solution of the problem of finding the fastest mixing reversible Markov chain, on a fixed graph, with a given equilibrium distribution.
.Abstract. We consider a class of weighted gradient methods for distributed resource allocation over a network. Each node of the network is associated with a local variable and a convex cost function; the sum of the variables (resources) across the network is fixed. Starting with a feasible allocation, each node updates its local variable in proportion to the differences between the marginal costs of itself and its neighbors. We focus on how to choose the proportional weights on the edges (scaling factors for the gradient method) to make this distributed algorithm converge and on how to make the convergence as fast as possible.We give sufficient conditions on the edge weights for the algorithm to converge monotonically to the optimal solution; these conditions have the form of a linear matrix inequality. We give some simple, explicit methods to choose the weights that satisfy these conditions. We derive a guaranteed convergence rate for the algorithm and find the weights that minimize this rate by solving a semidefinite program. Finally, we extend the main results to problems with general equality constraints and problems with block separable objective function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.