Highly photoluminescent, lead‐free perovskites are of interest for displays and solid‐state light‐emitting devices. In this report, streak camera‐based time‐resolved emission and transient absorption spanning visible to deep‐ultraviolet (UV) wavelengths are utilized to study self‐trapped and free exciton dynamics in vacuum‐deposited cesium copper halide thin films of CsCu2I3 and Cs3Cu2I5. Self‐trapped exciton emission of CsCu2I3 exhibits more noticeable changes with time in the peak position and width than Cs3Cu2I5. UV‐to‐blue emission is detectable for both compositions, where free exciton emission is distinct for CsCu2I3. Transient absorption shows loss of ground‐state bleach signals at early time delays for both, and the bleach signal shifts toward higher energy as time delay increases, likely due to strains induced by the newly created self‐trapped excitons. Global analysis performed on the transient absorption results yields time constants in these materials that build an overall dynamic scheme. This work aids in building a complete picture regarding light emission in these promising materials.
Boron-based nanomaterials are emerging as non-toxic, earth-abundant (photo)electrocatalyst materials in solar energy conversion for the production of solar hydrogen fuel and environmental remediation. Boron carbon oxynitride (BCNO) is a quaternary semiconductor with electronic, optical, and physicochemical properties that can be tuned by varying the composition of boron, nitrogen, carbon, and oxygen. However, the relationship between BCNO's structure and -photocatalytic activity relationship has yet to be explored. We performed an in-depth spectroscopic analysis to elucidate the effect of using two different nitrogen precursors and the effect of annealing temperatures in the preparation of BCNO. BCNO nanodisks (D = 6.7 ± 1.1 nm) with turbostratic boron nitride diffraction patterns were prepared using guanidine hydrochloride as the nitrogen source precursor upon thermal annealing at 800°C. The X-ray photoelectron spectroscopy (XPS) surface elemental analysis of the BCNO nanodisks revealed the B, C, N, and O compositions to be 40.6%, 7.95%, 37.7%, and 13.8%, respectively. According to the solid-state 11B NMR analyses, the guanidine hydrochloride-derived BCNO nanodisks showed the formation of various tricoordinate BNx(OH)3−x species, which also served as one of the photocatalytic active sites. The XRD and in-depth spectroscopic analyses corroborated the preparation of BCNO-doped hexagonal boron nitride nanodisks. In contrast, the BCNO annealed at 600 °C using melamine as the nitrogen precursor consisted of layered nanosheets composed of B, C, N, and O atoms covalently bonded in a honeycomb lattice as evidence by the XRD, XPS, and solid-state NMR analysis (11B and 13C) analyses. The XPS surface elemental composition of the melamine-derived BCNO layered structures consisted of a high carbon composition (75.1%) with a relatively low boron (5.24%) and nitrogen (7.27%) composition, which indicated the formation of BCNO-doped graphene oxides layered sheet structures. This series of melamine-derived BCNO-doped graphene oxide layered structures were found to exhibit the highest photocatalytic activity, exceeding the photocatalytic activity of graphitic carbon nitride. In this layered structure, the formation of the tetracoordinate BNx(OH)3−x(CO) species and the rich graphitic domains were proposed to play an important role in the photocatalytic activity of the BCNO-doped graphene oxides layered structures. The optical band gap energies were measured to be 5.7 eV and 4.2 eV for BCNO-doped hexagonal boron nitride nanodisks and BCNO-doped graphene oxides layered structures, respectively. Finally, BCNO exhibited an ultralong photoluminescence with an average decay lifetime of 1.58, 2.10, 5.18, and 8.14 µs for BGH01, BGH03, BMH01, BMH03, respectively. This study provides a novel metal-free photocatalytic system and provides the first structural analysis regarding the origin of BCNO-based photocatalyst. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.