Amongst the most severe clinical outcomes of life-long infections with Helicobacter pylori is the development of peptic ulcers and gastric adenocarcinoma - diseases often associated with an increase of regulatory T cells. Understanding H. pylori-driven regulation of T cells is therefore of crucial clinical importance. Several studies have defined mammalian microRNAs as key regulators of the immune system and of carcinogenic processes. Hence, we aimed here to identify H. pylori-regulated miRNAs, mainly in human T cells. MicroRNA profiling of non-infected and infected human T cells revealed H. pylori infection triggers miR-155 expression in vitro and in vivo. By using single and double H. pylori mutants and the corresponding purified enzymes, the bacterial vacuolating toxin A (VacA) and γ-glutamyl transpeptidase (GGT) plus lipopolysaccharide (LPS) tested positive for their ability to regulate miR-155 and Foxp3 expression in human lymphocytes; the latter being considered as the master regulator and marker of regulatory T cells. RNAi-mediated knockdown (KD) of the Foxp3 transcription factor in T cells abolished miR-155 expression. Using adenylate cyclase inhibitors, the miR-155 induction cascade was shown to be dependent on the second messenger cyclic adenosine monophosphate (cAMP). Furthermore, we found that miR-155 directly targets the protein kinase A inhibitor α (PKIα) mRNA in its 3′UTR, indicative of a positive feedback mechanism on the cAMP pathway. Taken together, our study describes, in the context of an H. pylori infection, a direct link between Foxp3 and miR-155 in human T cells and highlights the significance of cAMP in this miR-155 induction cascade.
Antimicrobial peptides are widely distributed in nature, and in vertebrates, they play a key function in the innate immune defense system. It is generally agreed that these molecules may provide new antibiotics with therapeutic value. However, there are still many unsolved questions regarding the mechanisms underlying their antimicrobial activity as well as the mechanisms of resistance evolved by microorganisms against these molecules. The second point was addressed in this study. After determining the activity of 10 antimicrobial peptides against Mycoplasma pulmonis, a murine respiratory pathogen, the development of resistance was investigated. Following in vitro selection using subinhibitory concentrations of peptides, clones of this bacterium showing increased resistance to melittin or gramicidin D were obtained. For some of the clones, a cross-resistance was observed between these two peptides, in spite of their deep structural differences, and also with tetracycline. A proteomic analysis suggested that the stress response in these clones was constitutively activated, and this was confirmed by finding mutations in the hrcA gene; in mycoplasmas, bacteria which lack alternative sigma factors, the HrcA protein is supposed to play a key role as a negative regulator of heat shock proteins. By complementation of the hrcA mutants with the wild-type gene, the initial MICs of melittin and gramicidin D decreased to values close to the initial ones. This indicates that the resistance of M. pulmonis to these two antimicrobial peptides could result from a stress response involving HrcA-regulated genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.