Cancer cells can invade three-dimensional matrices by distinct mechanisms, recently defined by their dependence on extracellular proteases, including matrix metalloproteinases. Upon treatment with protease inhibitors, some tumour cells undergo a 'mesenchymal to amoeboid' transition that allows invasion in the absence of pericellular proteolysis and matrix degradation. We show here that in HT1080 cells, this transition is associated with weakened integrin-dependent adhesion, consistently reduced cell surface expression of the a2b1 integrin collagen receptor and impaired signalling downstream, as judged by reduced autophosphorylation of focal adhesion kinase (FAK). On examining cancer cells that use defined invasion strategies, we show that distinct from mesenchymal invasion, amoeboid invasion is independent of intracellular calpain 2 proteolytic activity that is usually needed for turnover of integrin-linked adhesions during two-dimensional planar migration. Moreover, an inhibitor of Rho/ROCK signalling, which specifically impairs amoeboid-like invasion, restores cell surface expression of a2b1 integrin, downstream FAK autophosphorylation and calpain 2 sensitivity -features of mesenchymal invasion. These findings link weakened integrin function to a lack of requirement for calpain 2-mediated integrin adhesion turnover during amoeboid invasion. In keeping with the need for integrin adhesion turnover, mesenchymal invasion is uniquely sensitive to Src inhibitors. Thus, the need for a major pathway that controls integrin adhesion turnover defines and distinguishes cancer cell invasion strategies.
The majority of human colorectal cancers (CRCs) are initiated by mutations arising in the adenomatous polyposis coli (APC) tumour suppressor gene. However, a new class of non-APC mutated CRCs has been defined that have a serrated histopathology and carry the V600EBRAF oncogene. Here we have investigated the pathogenesis of serrated CRCs by expressing V600EBraf in the proliferative cells of the mouse gastrointestinal tract. We show that the oncogene drives an initial burst of Mek-dependent proliferation, leading to the formation of hyperplastic crypts. This is associated with β-catenin nuclear localization by a mechanism involving Mapk/Erk kinase (Mek)-dependent, Akt-independent phosphorylation of Gsk3β. However, hyperplastic crypts remain dormant for prolonged periods due to the induction of crypt senescence accompanied by upregulation of senescence-associated β-galactosidase and p16Ink4a. We show that tumour progression is associated with down-regulation of p16Ink4a through enhanced CpG methylation of exon 1 and knockout of Cdkn2a confirms this gene is a barrier to tumour progression. Our studies identify V600EBRAF as an early genetic driver mutation in serrated CRCs and indicate that, unlike APC-mutated cancers, this subtype arises by the bypassing of a V600EBraf driven oncogene-induced senescence programme.
The CRAF protein kinase regulates proliferative, differentiation, and survival signals from activated RAS proteins to downstream effectors, most often by inducing MEK/ERK activation. A well-established model of CRAF regulation involves RAS-mediated translocation of CRAF to the plasma membrane, where it is activated by a series of events including phosphorylation. Here we have discovered a new mode of regulation that occurs prior to this step. By creating a kinase-defective version of CRAF in mice or by use of the RAF inhibitor sorafenib, we show that CRAF must first undergo autophosphorylation of serine 621 (S621). Autophosphorylation occurs in cis, does not involve MEK/ERK activation, and is essential to ensure the correct folding and stability of the protein. In the absence of S621 phosphorylation, CRAF is degraded by the proteasome by mechanisms that do not uniquely rely on the E3 ubiquitin ligase CHIP.
Oncogenic mutations in the BRAF gene are detected in approximately 7% of human cancer samples with a particularly high frequency of mutation in malignant melanomas. Over 40 different missense BRAF mutations have been found, but the vast majority (>90%) represent a single nucleotide change resulting in a valine-->glutamate mutation at residue 600 ((V600E)BRAF). In cells cultured in vitro, (V600E)BRAF is able to stimulate endogenous MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] and ERK phosphorylation leading to an increase in cell proliferation, cell survival, transformation, tumorigenicity, invasion and vascular development. Many of these hallmarks of cancer can be reversed by treatment of cells with siRNA (small interfering RNA) to BRAF or by inhibiting MEK, indicating that BRAF and MEK are attractive therapeutic targets in cancer samples with BRAF mutations. In order to fully understand the role of oncogenic BRAF in cancer development in vivo as well as to test the in vivo efficacy of anti-BRAF or anti-MEK therapies, GEMMs (genetically engineered mouse models) have been generated in which expression of oncogenic BRaf is conditionally dependent on the Cre recombinase. The delivery/activation of the Cre recombinase can be regulated in both a temporal and spatial manner and therefore these mouse models can be used to recapitulate the somatic mutation of BRAF that occurs in different tissues in the development of human cancer. The data so far obtained following Cre-mediated activation in haemopoietic tissue and the lung indicate that (V600E)BRAF mutation can drive tumour initiation and that its primary effect is to induce high levels of cyclin D1-mediated cell proliferation. However, hallmarks of OIS (oncogene-induced senescence) are evident that restrain further development of the tumour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.