Although anticapsular antibodies confer serotype-specific immunity to pneumococci, children increase their ability to clear colonization before these antibodies appear, suggesting involvement of other mechanisms. We previously reported that intranasal immunization of mice with pneumococci confers CD4+ T cell–dependent, antibody- and serotype-independent protection against colonization. Here we show that this immunity, rather than preventing initiation of carriage, accelerates clearance over several days, accompanied by neutrophilic infiltration of the nasopharyngeal mucosa. Adoptive transfer of immune CD4+ T cells was sufficient to confer immunity to naïve RAG1−/− mice. A critical role of interleukin (IL)-17A was demonstrated: mice lacking interferon-γ or IL-4 were protected, but not mice lacking IL-17A receptor or mice with neutrophil depletion. In vitro expression of IL-17A in response to pneumococci was assayed: lymphoid tissue from vaccinated mice expressed significantly more IL-17A than controls, and IL-17A expression from peripheral blood samples from immunized mice predicted protection in vivo. IL-17A was elicited by pneumococcal stimulation of tonsillar cells of children or adult blood but not cord blood. IL-17A increased pneumococcal killing by human neutrophils both in the absence and in the presence of antibodies and complement. We conclude that IL-17A mediates pneumococcal immunity in mice and probably in humans; its elicitation in vitro could help in the development of candidate pneumococcal vaccines.
Streptococcus pneumoniae causes significant morbidity and mortality especially in children. Some pneumococcal protein antigens can protect mice against infection. Little information is available concerning the nature of naturally acquired protective immunity to pneumococci in humans induced by these antigens. This study investigates the relationships between systemic and local antibody production and carriage in children. Children undergoing adenoidectomy (n=112, ages 2-12 years) were studied. Nasopharyngeal swabs were collected for pneumococcal culture. Serum and saliva were assayed for antibodies to several pneumococcal proteins: choline binding protein A (CbpA), pneumolysin (Ply), pneumococcal surface adhesin A (PsaA) and pneumococcal surface protein A (PspA). Adenoidal mononuclear cells (MNC) were cultured with pneumococcal culture supernatants or recombinant proteins. Cell culture supernatants were analyzed for antigen-specific antibodies. Carriage rates fell with age and serum levels of anti-CbpA, Ply and PspA rose. Anti-CbpA and -Ply serum and salivary IgG antibody levels were higher in children who were culture negative than those who were colonized. Antigen stimulation increased respective antigen-specific IgG production by adenoidal MNC and these responses were greater in those who were colonized than in culture-negative children. Antibodies to CbpA and Ply may protect children aged 2 years and older against pneumococcal colonization. Adenoids may be important local induction and effector sites for both mucosal and systemic antibody production to pneumococcal proteins in children.
These data suggest that Ply induces CD4 T cell proliferative responses with production of IFN- gamma and TNF- alpha in PBMCs or of IFN- gamma and IL-10 in adenoidal MNCs, which may be important in modulating pneumococcal carriage in children.
Differential regulation of primary and memory responses by BLPs through TLR2 may have important implications for therapeutic and vaccination strategies against bacterial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.