The mechanisms of action underlying the pharmacological properties of the natural alkaloid berberine still need investigation. Planarian regeneration is instrumental in deciphering developmental responses following drug exposure. Here we report the effects of berberine on regeneration in the planarian Dugesia japonica. Our findings demonstrate that this compound perturbs the regenerative pattern. By real-time PCR screening for the effects of berberine exposure on gene expression, we identified alterations in the transcriptional profile of genes representative of different tissues, as well as of genes involved in extracellular matrix (ECM) remodeling. Although berberine does not influence cell proliferation/apoptosis, our experiments prove that this compound causes abnormal regeneration of the planarian visual system. Potential berberine-induced cytotoxic effects were noticed in the intestine. Although we were unable to detect abnormalities in other structures, our findings, sustained by RNAi-based investigations, support the possibility that berberine effects are critically linked to anomalous ECM remodeling in treated planarians.
Curcumin (CUR), a natural polyphenol extracted from rhizome of the Curcuma longa L, has received great attention for its multiple potential health benefits as well as disease prevention. For instance, CUR protects against toxic agents acting on the human body, including the nervous system. In detail, CUR possesses, among others, strong effects as an autophagy activator. The present study indicates that CUR counteracts methamphetamine (METH) toxicity. Such a drug of abuse is toxic by disturbing the autophagy machinery. We profited from an unbiased, low variable cell context by using rat pheochromocytoma PC12 cell line. In such a system, a strong protection was exerted by CUR against METH toxicity. This was associated with increased autophagy flux, merging of autophagosomes with lysosomes and replenishment of autophagy vacuoles with LC3, which instead is moved out from the vacuoles by METH. This is expected to enable the autophagy machinery. In fact, while in METH-treated cells the autophagy substrates α-synuclein accumulates in the cytosol, CUR speeds up α-synuclein clearance. Under the effects of CUR LC3 penetrate in autophagy vacuoles to commit them to cell clearance and promotes the autophagy flux. The present data provide evidence that CUR counteracts the neurotoxic effects induced by METH by promoting autophagy.
The natural alkaloid sanguinarine has remarkable therapeutic properties and has been used for centuries as a folk remedy. This compound exhibits interesting anticancer properties and is currently receiving attention as a potential chemotherapeutic agent. Nevertheless, limited information exists regarding its safety for developing organisms. Planarians are an animal model known for their extraordinary stem cell-based regenerative capabilities and are increasingly used for toxicological and pharmacological studies. Here, we report that sanguinarine, at micromolar concentrations, perturbs the regeneration process in the planarian Dugesia japonica. We show that sanguinarine exposure causes defects during anterior regeneration and visual system recovery, as well as anomalous remodelling of pre-existing structures. Investigating the effects of sanguinarine on stem cells, we found that sanguinarine perturbs the transcriptional profile of early and late stem cell progeny markers. Our results indicate that sanguinarine exposure alters cell dynamics and induces apoptosis without affecting cell proliferation. Finally, sanguinarine exposure influences the expression level of H , K-ATPase α subunit, a gene of the P-type-ATPase pump family which plays a crucial role during anterior regeneration in planaria. On the whole, our data reveal that sanguinarine perturbs multiple mechanisms which regulate regeneration dynamics and contribute to a better understanding of the safety profile of this alkaloid in developing organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.