Powder diffraction pattern of SP-1 graphite has been obtained using synchrotron X-ray diffraction. Unit cell dimensions were calculated using a least-squares analysis that refined to a ͉⌬2°͉ of no more than 0.007. A hexagonal cell was determined with a space group of P6 3 /mmc ͑194͒, aϭ2.4617͑2͒ and cϭ6.7106 ͑4͒ Å. The Smith/Synder figure of merit is 167 based upon 11 peaks, which indicates that the quality of this data set is superior to the existing PDF card for graphite, 41-1487. It is also emphasized that the interlayer spacing of graphite should be 3.355͑1͒ Å. Using GAS and EXPGUI codes, a new set of calculated powder diffraction data based upon the interlayer spacing of 3.555 Å is generated. A comparison with the current calculated card, 75-1621, has also been made.
In March 2012, a group of researchers met to discuss emerging topics in ceramic science and to identify grand challenges in the field. By the end of the workshop, the group reached a consensus on eight challenges for the future:—understanding rare events in ceramic microstructures, understanding the phase‐like behavior of interfaces, predicting and controlling heterogeneous microstructures with unprecedented functionalities, controlling the properties of oxide electronics, understanding defects in the vicinity of interfaces, controlling ceramics far from equilibrium, accelerating the development of new ceramic materials, and harnessing order within disorder in glasses. This paper reports the outcomes of the workshop and provides descriptions of these challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.