This metagenomics investigation of three closely adjacent sampling sites from an archaeological excavation of a pre-industrial coal mining exploration shaft provides detailed information on the composition of the local soil bacterial communities. The observed significant differences between the samples, reflected in the 16S r-RNA analyses, were consistent with the archaeologically observed situation distinguishing the coal seam, the rapidly deposited bright sediment inside an exploration shaft, and the topsoil sediment. In general, the soils were characterized by a dominance of Proteobacteria, Actinobacteria, Acidobacteria, and Archaea, whereas the coal seam was characterized by the highest proportion of Proteobacteria; the topsoil was characterized by very high proportions of Archaea—in particular, Nitrosotaleaceae—and Acidobacteria, mainly of Subgroup 2. Interestingly, the samples of the fast-deposited bright sediment showed a rank function of OTU abundances with disproportional values in the lower abundance range. This could be interpreted as a reflection of the rapid redeposition of soil material during the refilling of the exploration shaft in the composition of the soil bacterial community. This interpretation is supported by the observation of a comparatively high proportion of reads relating to bacteria known to be alkaliphilic in this soil material. In summary, these investigations confirm that metagenomic analyses of soil material from archaeological excavations can provide valuable information about the local soil bacterial communities and the historical human impacts on them.
Soil samples taken during archaeological investigations of a historical tannery area in the eastern suburb of the medieval city of Jena have been investigated by 16S r-RNA gene profiling. The analyses supplied a large spectrum of interesting bacteria, among them Patescibacteria, Methylomirabilota, Asgardarchaeota, Zixibacteria, Sideroxydans and Sulfurifustis. Samples taken from soil inside the residues of large vats show large differences in comparison to the environmental soil. The PCAs for different abundance classes clearly reflect the higher similarity between the bacterial communities of the outside-vat soils in comparison with three of the inside-vat soil communities. Two of the in-side vat soils are distinguishable from the other samples by separate use of each abundance class, but classes of lower abundance are better applicable than the highly abundant bacteria for distinguishing the sampling sites by PCA, in general. This effect could be interpreted by the assumption that less abundant types in the 16S r-RNA data tend to be more related to an earlier state of soil development than the more abundant and might be, therefore, better suited for conclusions on the state of the soils in an earlier local situation. In addition, the analyses allowed identification of specific features of each single sampling site. In one site specifically, DNA hints of animal residue-related bacteria were found. Obviously, the special situation in the in-site vat soils contributes to the diversity of the place, and enhances its Beta-diversity. Very high abundancies of several ammonia-metabolizing and of sulphur compound-oxidizing genera in the metagenomics data can be interpreted as an echo of the former tannery activities using urine and processing keratin-rich animal materials. In summary, it can be concluded that the 16S r-RNA analysis of such archaeological places can supply a lot of data related to ancient human impacts, representing a kind of “ecological memory of soil”.
Cathode-associated microbial communities (caMCs) are the functional key elements in the conversion of excess electrical energy into biomass. In this study, we investigated the development of electrochemical caMCs based on two-chamber microbial electrolytic cells (MECs) after optimization of media composition. Microbial communities obtained from a historical soil sample were inoculated into the cathode chamber of MECs. The inorganic medium with (A) carbon dioxide in air or (B) 100 mM sodium bicarbonate as carbon source was used in the absence of any organic carbon source. After 12 days of operation, the experimental results showed that (1) the bacterial community in group B exhibited lush growth and (2) a single strain TX168 Epilithonimonas bovis isolated from group A indicated electrochemical activity and synthesized large volumes of biomass using sodium bicarbonate. We also analyzed the caMCs of the MECs and reference samples without electro-cultivation using 16S rRNA gene sequencing. The results showed that the caMCs of MECs in groups A and B were dominated by the genera Acinetobacter and Pseudomonas. The caMCs were further inoculated and cultured on different agars to isolate specific electroactive bacterial strains. Overall, our study highlights the possibility of converting excess energy into biomass by electro-cultivation and the importance of selecting appropriate media to enrich specific microbial communities and single strains in MECs.
Beside natural factors, human activities are important for the development of microbiomes. Thus, local soil bacterial communities are affected by recent activities such as agriculture, mining and industry. In addition, ancient human impacts dating back centuries or millennia have changed soils and can emboss the recent bacterial communities up to now, representing a certain long-term “memory of soil”. Soil samples from five different archaeological excavation places were investigated for the presence of Archaea with a Next Generation Sequencing (NGS) analysis of the DNA coding for 16S r-RNA sequences. It was found that the abundance of Archaea differs strongly between less than one and more than 40 percent of bacteria. A Principal Component Analysis (PCA) of all samples shows that the archaeological excavation places can be distinguished from each other by the archaeal component of soil bacterial communities, which presents a typical pattern for each place. Most samples are marked by the dominance of Crenarchaeota, which are presented mainly by ammonia-related types. High contents of Nanoarchaeaota have been observed in one ash deposit of a historical saline and all samples of a historical tannery area. These samples are also marked by a significant presence of Dadabacteria. The specific abundancies of special Archaea—among them ammonia-oxidizing and sulphur-related types—are due obviously to former human activities and support the concept of the “ecological memory of soil”.
Droplet-based microfluidic screening techniques can benefit from interfacing established microtiter plate-based screening and sample management workflows. Interfacing tools are required both for loading preconfigured microtiter-plate (MTP)-based sample collections into droplets and for dispensing the used droplets samples back into MTPs for subsequent storage or further processing. Here, we present a collection of Digital Microfluidic Pipetting Tips (DMPTs) with integrated facilities for droplet generation and manipulation together with a robotic system for its operation. This combination serves as a bidirectional sampling interface for sample transfer from wells into droplets (w2d) and vice versa droplets into wells (d2w). The DMPT were designed to fit into 96-deep-well MTPs and prepared from glass by means of microsystems technology. The aspirated samples are converted into the channel-confined droplets’ sequences separated by an immiscible carrier medium. To comply with the demands of dose-response assays, up to three additional assay compound solutions can be added to the sample droplets. To enable different procedural assay protocols, four different DMPT variants were made. In this way, droplet series with gradually changing composition can be generated for, e.g., 2D screening purposes. The developed DMPT and their common fluidic connector are described here. To handle the opposite transfer d2w, a robotic transfer system was set up and is described briefly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.