Context Short noncoding RNAs known as microRNAs (miRNAs) control protein expression through the degradation of RNA or the inhibition of protein translation. The miRNAs influence a wide range of biologic processes and are often deregulated in cancer. This family of small RNAs constitutes potentially valuable markers for the diagnosis, prognosis, and therapeutic choices in prostate cancer (PCa) patients, as well as potential drugs (miRNA mimics) or drug targets (anti-miRNAs) in PCa management. Objective To review the currently available data on miRNAs as biomarkers in PCa and as possible tools for early detection and prognosis. Evidence acquisition A systematic review was performed searching the PubMed database for articles in English using a combination of the following terms: microRNA, miRNA, cancer, prostate cancer, miRNA profiling, diagnosis, prognosis, therapy response, and predictive marker. Evidence synthesis We summarize the existing literature regarding the profiling of miRNA in PCa detection, prognosis, and response to therapy. The articles were reviewed with the main goal of finding a common recommendation that could be translated from bench to bedside in future clinical practice. Conclusions The miRNAs are important regulators of biologic processes in PCa progression. A common expression profile characterizing each tumor subtype and stage has still not been identified for PCa, probably due to molecular heterogeneity as well as differences in study design and patient selection. Large-scale studies that should provide additional important information are still missing. Further studies, based on common clinical parameters and guidelines, are necessary to validate the translational potential of miRNAs in PCa clinical management. Such common signatures are promising in the field and emerge as potential biomarkers. Patient summary The literature shows that microRNAs hold potential as novel biomarkers that could aid prostate cancer management, but additional studies with larger patient cohorts and common guidelines are necessary before clinical implementation.
The role of immune response is emerging as a key factor in the complex multistep process of cancer. Tumor microenvironment contains different types of immune cells, which contribute to regulate the fine balance between anti and protumor signals. In this context, mechanisms of crosstalk between cancer and immune cells remain to be extensively elucidated. Interestingly, microRNAs (miRNAs) have been demonstrated to function as crucial regulators of immune response in both physiological and pathological conditions. Specifically, different miRNAs have been reported to have a role in controlling the development and the functions of tumor-associated immune cells. This review aims to describe the most important miRNAs acting as critical modulators of immune response in the context of different solid tumors. In particular, we discuss recent studies that have demonstrated the existence of miRNA-mediated mechanisms regulating the recruitment and the activation status of specific tumor-associated immune cells in the tumor microenvironment. Moreover, various miRNAs have been found to target key cancer-related immune pathways, which concur to mediate the secretion of immunosuppressive or immunostimulating factors by cancer or immune cells. Modalities of miRNA exchange and miRNA-based delivery strategies are also discussed. Based on these findings, the modulation of individual or multiple miRNAs has the potential to enhance or inhibit specific immune subpopulations supporting antitumor immune responses, thus contributing to negatively affect tumorigenesis. New miRNA-based strategies can be developed for more effective immunotherapeutic interventions in cancer.
BackgroundNon-coding RNAs have been drawing increasing attention in recent years as functional data suggest that they play important roles in key cellular processes. N-BLR is a primate-specific long non-coding RNA that modulates the epithelial-to-mesenchymal transition, facilitates cell migration, and increases colorectal cancer invasion.ResultsWe performed multivariate analyses of data from two independent cohorts of colorectal cancer patients and show that the abundance of N-BLR is associated with tumor stage, invasion potential, and overall patient survival. Through in vitro and in vivo experiments we found that N-BLR facilitates migration primarily via crosstalk with E-cadherin and ZEB1. We showed that this crosstalk is mediated by a pyknon, a short ~20 nucleotide-long DNA motif contained in the N-BLR transcript and is targeted by members of the miR-200 family. In light of these findings, we used a microarray to investigate the expression patterns of other pyknon-containing genomic loci. We found multiple such loci that are differentially transcribed between healthy and diseased tissues in colorectal cancer and chronic lymphocytic leukemia. Moreover, we identified several new loci whose expression correlates with the colorectal cancer patients’ overall survival.ConclusionsThe primate-specific N-BLR is a novel molecular contributor to the complex mechanisms that underlie metastasis in colorectal cancer and a potential novel biomarker for this disease. The presence of a functional pyknon within N-BLR and the related finding that many more pyknon-containing genomic loci in the human genome exhibit tissue-specific and disease-specific expression suggests the possibility of an alternative class of biomarkers and therapeutic targets that are primate-specific.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-017-1224-0) contains supplementary material, which is available to authorized users.
Once a patient is in septic shock, survival rates drop by 7.6% for every hour of delay in antibiotic therapy. Biomarkers based on the molecular mechanism of sepsis are important for timely diagnosis and triage. Here, we study the potential roles of a panel of cellular and viral miRNAs as sepsis biomarkers. We performed genome-wide microRNA (miRNA) expression profiling in leukocytes from septic patients and nonseptic controls, combined with quantitative RT-PCR in plasmas from two cohorts of septic patients, two cohorts of nonseptic surgical patients and healthy volunteers. Enzyme-linked immunosorbent assay, miRNA transfection and chromatin immunoprecipitation were used to study the effects of Kaposi sarcoma herpes virus (KSHV) miRNAs on interleukin's secretion. Differences related to sepsis etiology were noted for plasma levels of 10 cellular and 2 KSHV miRNAs (miR-K-10b and miR-K-12-12*) between septic and nonseptic patients. All the sepsis groups had high KSHV miRNAs levels compared with controls; Afro-American patients had higher levels of KSHV-miR-K12-12* than non-Afro-American patients. Both KSHV miRNAs were increased on postoperative day 1, but returned to baseline on day 7; they acted as direct agonists of Toll-like receptor 8 (TLR8), which might explain the increased secretion of the IL-6 and IL-10. Cellular and KSHV miRNAs are differentially expressed in sepsis and early postsurgical patients and may be exploited for diagnostic and therapeutic purposes. Increased miR-K-10b and miR-K12-12* are functionally involved in sepsis as agonists of TLR8, forming a positive feedback that may lead to cytokine dysregulation.
In breast cancer (BC) patients, local recurrences often arise in proximity of the surgical scar, suggesting that response to surgery may have a causative role. Radiotherapy (RT) after lumpectomy significantly reduces the risk of recurrence. We investigated the direct effects of surgery and of RT delivered intraoperatively (IORT), by collecting irradiated and non-irradiated breast tissues from BC patients, after tumor removal. These breast tissue specimens have been profiled for their microRNA (miR) expression, in search of differentially expressed miR among patients treated or not with IORT. Our results demonstrate that IORT elicits effects that go beyond the direct killing of residual tumor cells. IORT altered the wound response, inducing the expression of miR-223 in the peri-tumoral breast tissue. miR-223 downregulated the local expression of epidermal growth factor (EGF), leading to decreased activation of EGF receptor (EGFR) on target cells and, eventually, dampening a positive EGF–EGFR autocrine/paracrine stimulation loop induced by the post-surgical wound-healing response. Accordingly, both RT-induced miR-223 and peri-operative inhibition of EGFR efficiently prevented BC cell growth and reduced recurrence formation in mouse models of BC. Our study uncovers unknown effects of RT delivered on a wounded tissue and prompts to the use of anti-EGFR treatments, in a peri-operative treatment schedule, aimed to timely treat BC patients and restrain recurrence formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.