Purpose: After apparently successful excision of breast cancer, risk of local recurrence remains high mainly in the area surrounding the original tumor, indicating that wound healing processes may be implicated.The proportional reduction of this risk by radiotherapy does not depend on the extent of surgery, suggesting that radiotherapy, in addition to killing tumor cells, may influence the tumor microenvironment. Experimental Design: We studied how normaland mammary carcinoma cell growth and motility are affectedby surgical wound fluids (WF), collectedover 24 hfollowingbreast-conserving surgery in 45 patients, 20 of whomhadreceivedadditionalTARGeted Intraoperative radioTherapy (TARGIT), immediately after the surgical excision. The proteomic profile of the WF and their effects on the activation of intracellular signal transduction pathways of breast cancer cells were also analyzed. Results: WF stimulated proliferation, migration, and invasion of breast cancer cell lines.The stimulatory effect was almost completely abrogated when fluids from TARGIT-treated patients were used. These fluids displayed altered expression of several cytokines and failed to properly stimulate the activation of some intracellular signal transduction pathways, when compared with fluids harvested from untreated patients. Conclusions: Delivery of TARGIT to the tumor bed alters the molecular composition and biological activity of surgical WF. This novel antitumoral effect could, at least partially, explain the very low recurrence rates found in a large pilot study using TARGIT. It also opens a novel avenue for identifying new molecular targets and testing novel therapeutic agents.
The balanced activity of microtubule-stabilizing and -destabilizing proteins determines the extent of microtubule dynamics, which is implicated in many cellular processes, including adhesion, migration, and morphology. Among the destabilizing proteins, stathmin is overexpressed in different human malignancies and has been recently linked to the regulation of cell motility. The observation that stathmin was overexpressed in human recurrent and metastatic sarcomas prompted us to investigate stathmin contribution to tumor local invasiveness and distant dissemination. We found that stathmin stimulated cell motility in and through the extracellular matrix (ECM) in vitro and increased the metastatic potential of sarcoma cells in vivo. On contact with the ECM, stathmin was negatively regulated by phosphorylation. Accordingly, a less phosphorylable stathmin point mutant impaired ECM-induced microtubule stabilization and conferred a higher invasive potential, inducing a rounded cell shape coupled with amoeboid-like motility in three-dimensional matrices. Our results indicate that stathmin plays a significant role in tumor metastasis formation, a finding that could lead to exploitation of stathmin as a target of new antimetastatic drugs.
In many human cancers, p27 downregulation correlates with a worse prognosis, suggesting that p27 levels could represent an important determinant in cell transformation and cancer development. Using a mouse model system based on v-src-induced transformation, we show here that p27 absence is always linked to a more aggressive phenotype. When cultured in three-dimensional contexts, v-src-transformed p27-null fibroblasts undergo a morphological switch from an elongated to a rounded cell shape, accompanied by amoeboid-like morphology and motility. Importantly, the acquisition of the amoeboid motility is associated with a greater ability to move and colonize distant sites in vivo. The reintroduction of different p27 mutants in v-srctransformed p27-null cells demonstrates that the control of cell proliferation and motility represents two distinct functions of p27, both necessary for it to fully act as a tumor suppressor. Thus, we highlight here a new p27 function in driving cell plasticity that is associated with its C-terminal portion and does not depend on the control of cyclin-dependent kinase activity.Dissemination of tumor cells is strictly linked to their ability to attach to and move within the extracellular matrix (ECM) in a three-dimensional (3D) environment. The use of 3D experimental model systems revealed that a higher complexity in cell migration and adaptation responses exists in the 3D model than in the classical 2D model (10,16,41,49). A striking example is given by the fact that only in 3D could individually migrating cells use different mechanisms such as mesenchymal and amoeboid motility (16,17). The relative slow mesenchymal migration is characterized by a fibroblast-like spindle shape and is dependent on integrin-mediated adhesion and on protease function (16). The amoeboid motility can in some cases represent a less adhesive, integrin-independent type of movement. Cells use a propulsive mechanism and are highly deformable, and rather than degrade the matrix, they are able to squeeze through it (16). As a result, the cells that use the amoeboid motility can potentially move faster than cells that use a mesenchymal strategy. Mesenchymal and amoeboid movements are also characterized by a different involvement of small GTPases of the Rho family. A high RhoA activity is associated mainly with the amoeboid motility, while the mesenchymal migration needs a high Rac activity at the leading edge to promote the extension of cellular protrusions (41,48). Under certain circumstances, cancer cells can undergo conversion from a mesenchymal toward an amoeboid motility, an event referred as mesenchymal-amoeboid transition (MAT) (50). MAT represents a putative escape mechanism in tumor cell dissemination that could be induced by inhibition of pericellular proteolysis (50) or by increased membrane-associated RhoA activity (18,40).
In breast cancer (BC) patients, local recurrences often arise in proximity of the surgical scar, suggesting that response to surgery may have a causative role. Radiotherapy (RT) after lumpectomy significantly reduces the risk of recurrence. We investigated the direct effects of surgery and of RT delivered intraoperatively (IORT), by collecting irradiated and non-irradiated breast tissues from BC patients, after tumor removal. These breast tissue specimens have been profiled for their microRNA (miR) expression, in search of differentially expressed miR among patients treated or not with IORT. Our results demonstrate that IORT elicits effects that go beyond the direct killing of residual tumor cells. IORT altered the wound response, inducing the expression of miR-223 in the peri-tumoral breast tissue. miR-223 downregulated the local expression of epidermal growth factor (EGF), leading to decreased activation of EGF receptor (EGFR) on target cells and, eventually, dampening a positive EGF–EGFR autocrine/paracrine stimulation loop induced by the post-surgical wound-healing response. Accordingly, both RT-induced miR-223 and peri-operative inhibition of EGFR efficiently prevented BC cell growth and reduced recurrence formation in mouse models of BC. Our study uncovers unknown effects of RT delivered on a wounded tissue and prompts to the use of anti-EGFR treatments, in a peri-operative treatment schedule, aimed to timely treat BC patients and restrain recurrence formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.