While the subcellular organisation of mitochondria is likely to influence many aspects of cell physiology, its molecular control is poorly understood. Here, we have investigated the role of the retrograde motor protein complex, dynein-dynactin, in mitochondrial localisation and morphology. Disruption of dynein function, achieved in HeLa cells either by over-expressing the dynactin subunit, dynamitin (p50), or by microinjection of an anti-dynein intermediate chain antibody, resulted in (a) the redistribution of mitochondria to the nuclear periphery, and (b) the formation of long and highly branched mitochondrial structures. Suggesting that an alteration in the balance between mitochondrial fission and fusion may be involved in both of these changes, overexpression of p50 induced the translocation of the fission factor dynamin-related protein (Drp1) from mitochondrial membranes to the cytosol and microsomes. Moreover, a dominant-negative-acting form of Drp1 mimicked the effects of p50 on mitochondrial morphology, while wild-type Drp1 almost completely restored normal mitochondrial distribution in p50 over-expressing cells. Thus, the dynein/dynactin complex plays an unexpected role in the regulation of mitochondrial morphology in living cells, by controlling the recruitment of Drp1 to these organelles.
Cultured rat cerebellar granule neurons were incubated with low nanomolar concentrations of the protonophore carbonylcyanide-p-trifluoromethoxyphenyl hydrazone (FCCP) to test the hypothesis that 'mild uncoupling' could be neuroprotective by decreasing oxidative stress. To quantify the uncoupling, respiration and mitochondrial membrane potential (Dw m ) were determined in parallel as a function of FCCP concentration. Dw m dropped by less than 10 mV before respiratory control was lost. Conditions for the valid estimation of matrix superoxide levels were determined from the rate of oxidation of the matrix-targeted fluorescent probe MitoSOX. No significant change in the level of matrix superoxide could be detected on addition of FCCP while respiratory control was retained, although cytoplasmic superoxide levels measured by dihydroethidium oxidation increased. 'Mild uncoupling' by 30 nmol/L FCCP did not alleviate neuronal dysregulation induced by glutathione depletion and significantly enhanced that due to menadione-induced oxidative stress. Low protonophore concentrations enhanced N-methyl-D-aspartate receptor-induced delayed calcium deregulation consistent with a decrease in the spare respiratory capacity available to match the bioenergetic demand of chronic receptor activation. It is concluded that the 'mild uncoupling' hypothesis is not supported by this model. Keywords: calcium, glutamate, mitochondria, mitochondrial membrane potential, oxidative stress, superoxide.
The pathologic activation of NMDA receptors by glutamate is a major contributor to neuronal cell death after stroke. Receptor activation causes a massive influx of calcium into the neuron that is accumulated by the mitochondria. The favored hypothesis is that the calcium loaded mitochondria generate reactive oxygen species that damage and ultimately killed the neuron. In this review this hypothesis is critically re-examined with an emphasis on the role played by deficits in ATP generation. Novel techniques are developed to monitor the bioenergetic status of in situ mitochondria in cultured neurons. Applying these techniques to a model of glutamate excitotoxicity suggests that enhanced reactive oxygen species are a consequence rather than a cause of failed cytoplasmic calcium homeostasis (delayed calcium deregulation, [DCD]), but that prior oxidative damage facilitates DCD by damaging mitochondrial ATP generation. This impacts on current hypotheses relating to the neuroprotective effects of mild mitochondrial uncoupling.
Decreases in GSH pools detected during ischemia sensitize neurons to excitotoxic damage. Thermodynamic analysis predicts that partial GSH depletion will cause an oxidative shift in the thiol redox potential. To investigate the acute bioenergetic consequences, neurons were exposed to monochlorobimane (mBCl), which depletes GSH by forming a fluorescent conjugate. Neurons transfected with redox-sensitive green fluorescent protein showed a positive shift in thiol redox potential synchronous with the formation of the conjugate. Mitochondria within neurons treated with mBCl for 1 h failed to hyperpolarize upon addition of oligomycin to inhibit their ATP synthesis. A decreased ATP turnover was confirmed by monitoring neuronal oxygen consumption in parallel with mitochondrial membrane potential (⌬ m ) and GSH-mBCl formation. mBCl progressively decreased cell respiration, with no effect on mitochondrial proton leak or maximal respiratory capacity, suggesting adequate glycolysis and a functional electron transport chain. This approach to "state 4" could be mimicked by the adenine nucleotide translocator inhibitor bongkrekic acid, which did not further decrease respiration when administered after mBCl. The cellular ATP/ADP ratio was decreased by mBCl, and consistent with mitochondrial ATP export failure, respiration could not respond to an increased cytoplasmic ATP demand by plasma membrane Na ؉ cycling; instead, mitochondria depolarized. More prolonged mBCl exposure induced mitochondrial failure, with ⌬ m collapse followed by cytoplasmic Ca 2؉ deregulation. The initial bioenergetic consequence of neuronal GSH depletion in this model is thus an inhibition of ATP export, which precedes other forms of mitochondrial dysfunction.A balance between the formation of reactive oxygen species, as normal byproducts of mitochondrial respiration (1), and the actions of antioxidants prevents oxidative stress and is crucial to neuronal survival (2). Together with the overactivation of glutamate receptors (excitotoxicity), oxidative stress is a result of the bioenergetic crisis that characterizes ischemia and plays a central role in the pathophysiology of the consequent neuronal damage (3). Neurons are particularly sensitive to oxidative damage and can be strongly sensitized to other injurious stimuli by levels of oxidative stress that are nontoxic per se (4). Similarly, Ca 2ϩ homeostasis is lost more quickly in cerebellar granule neurons (CGNs), 2 which show higher superoxide levels prior to the application of toxic concentrations of glutamate (5).The tripeptide glutathione is a key antioxidant that maintains protein thiols in a reduced state and scavenges H 2 O 2 in a reaction catalyzed by glutathione peroxidase (6, 7). In vivo, mitochondrial glutathione is partially lost during ischemia (8), and its supplementation in the form of glutathione ethyl ester can reduce the infarct size (9). Although mitochondria within cells deprived of GSH can eventually release cytochrome c and undergo opening of the permeability transition pore (PTP) (10...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.