Under controlled-environment conditions, ethametsulfuron-methyl doses that inhibited growth by 50% (ED(50)) were >100 and <1 g of active ingredient (ai) ha(-)(1) for ethametsulfuron-methyl-resistant (R) and -susceptible (S) wild mustard, respectively. There were no differences between the two biotypes with regard to absorption and translocation of the herbicide. Three days after treatment, approximately 90, 5, and 2% of the applied [(14)C]ethametsulfuron-methyl was found in the treated leaf, foliage, and roots of each biotype, respectively. Acetolactate synthase extracted from the two biotypes was equally sensitive to both ethametsulfuron-methyl and chlorsulfuron. These results indicate that resistance was not due to differences in the target site, absorption, or translocation. However, ethametsulfuron-methyl was metabolized more rapidly in the R than the S biotype. Approximately 82, 73, 42, 30, and 17% of the recovered radioactivity remained as ethametsulfuron-methyl in R wild mustard 3, 6, 18, 48, and 72 h after treatment, respectively. Conversely, 84, 79, 85, and 73% of the (14)C was ethametsulfuron-methyl in the S biotype 12, 24, 48, and 72 h after treatment, respectively. On the basis of these results, it is proposed that resistance is due to enhanced metabolism of ethametsulfuron-methyl in the R biotype.
A competitive direct enzyme-linked immunosorbent assay (ELISA) and high-pressure liquid chromatographic (HPLC) methods were compared in terms of accuracy and precision for the detection and quantification of glyphosate-spiked Nanopure, tap, and river waters. The ELISA had a detection limit of 0.6 ng mL(-)(1) and a linear working range of 1-25 ng mL(-)(1), whereas the HPLC method had a detection limit of 50 ng mL(-)(1) and a linear working range of 100-10000 ng mL(-)(l). No statistically significant differences (95% confidence interval) were found between the ELISA and HPLC analysis of the three water matrixes. The coefficients of variation obtained with the ELISA in tap water were between 10 and 19%, whereas the coefficients of variation for the HPLC analysis were between 7 and 15%. The use of ELISA for the analysis of glyphosate in water is a cost-effective and reliable method capable of meeting water quality guidelines established for Europe and North America.
The phenoxy herbicides (e.g., 2,4-D and MCPA) are used widely in agriculture for the selective control of broadleaf weeds. In Western Australia, the reliance on phenoxy herbicides has resulted in the widespread evolution of phenoxy resistance in wild radish (Raphanus raphanistrum) populations. In this research the inheritance and mechanism of MCPA resistance in wild radish were determined. Following classical breeding procedures, F1, F2, and backcross progeny were generated. The F1 progeny showed an intermediate response to MCPA, compared to parents, suggesting that MCPA resistance in wild radish is inherited as an incompletely dominant trait. Segregation ratios observed in F2 (3:1; resistant:susceptible) and backcross progeny (1:1; resistant to susceptible) indicated that the MCPA resistance is controlled by a single gene in wild radish. Radiolabeled MCPA studies suggested no difference in MCPA uptake or metabolism between resistant and susceptible wild radish; however, resistant plants rapidly translocated more 14C-MCPA to roots than susceptible plants, which may have been exuded from the plant. Understanding the genetic basis and mechanism of phenoxy resistance in wild radish will help formulate prudent weed management strategies to reduce the incidence of phenoxy resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.