New visualization approaches are being actively developed aiming to mitigate the effect of vergence-accommodation conflict in stereoscopic augmented reality; however, high interindividual variability in spatial performance makes it difficult to predict user gain. To address this issue, we investigated the effects of consistent and inconsistent binocular and focus cues on perceptual matching in the stereoscopic environment of augmented reality using a head-mounted display that was driven in multifocal and single focal plane modes. Participants matched the distance of a real object with images projected at three viewing distances, concordant with the display focal planes when driven in the multifocal mode. As a result, consistency of depth cues facilitated faster perceptual judgments on spatial relations. Moreover, the individuals with mild binocular and accommodative disorders benefited from the visualization of information on the focal planes corresponding to image planes more than individuals with normal vision, which was reflected in performance accuracy. Because symptoms and complaints may be absent when the functionality of the sensorimotor system is reduced, the results indicate the need for a detailed assessment of visual functions in research on spatial performance. This study highlights that the development of a visualization system that reduces visual stress and improves user performance should be a priority for the successful implementation of augmented reality displays.
Recent developments in three-dimensional image display technologies for augmentation of reality have led to a growing interest towards spatial perception research. Research in this domain aims to describe the quality of viewing experience and discover potential benefits and limitations of new visualisation approaches intended for use in professional capacities. Precise perception and interpretation of digital spatial information is crucial for decision making in many professional areas, such as healthcare, education, aerospace, and defence.Human spatial perception relies on a combination of multiple information sources -the so-called depth cues [1]. The differences in perception are related to the availability and weight of depth cues. Binocular depth cues (retinal disparity and vergence) ensure the most accurate judgements about spatial relations between objects in the near field, although their contribution to spatial perception decreases with an increase in viewing distance [1,2]. Besides the availability of depth cues, their consistency plays an important role. For instance, accommodation and vergence cues provide the same information about the depth of an object in natural viewing [3].Today, there are different types of display systems used for the three-dimensional presentation of information
Precise perception of three-dimensional (3D) images is crucial for a rewarding experience when using novel displays. However, the capability of the human visual system to perceive binocular disparities varies across the visual field meaning that depth perception might be affected by the two-dimensional (2D) layout of items on the screen. Nevertheless, potential difficulties in perceiving 3D images during free viewing have received only a little attention so far, limiting opportunities to enhance visual effectiveness of information presentation. The aim of this study was to elucidate how the 2D layout of items in 3D images impacts visual search and distribution of maintaining attention based on the analysis of the viewer’s gaze. Participants were searching for a target which was projected one plane closer to the viewer compared to distractors on a multi-plane display. The 2D layout of items was manipulated by changing the item distance from the center of the display plane from 2° to 8°. As a result, the targets were identified correctly when the items were displayed close to the center of the display plane, however, the number of errors grew with an increase in distance. Moreover, correct responses were given more often when subjects paid more attention to targets compared to other items on the screen. However, a more balanced distribution of attention over time across all items was characteristic of the incorrectly completed trials. Thus, our results suggest that items should be displayed close to each other in a 2D layout to facilitate precise perception of 3D images and considering distribution of attention maintenance based on eye-tracking might be useful in the objective assessment of user experience for novel displays.
This study explores perceptual organisation and shape perception when viewing a tetragon and an additional element (a dot) that is located at varying positions and distances next to the tetragon. The aim of the study is to determine the factors that can alter the interpretation of object configuration and impact whether the presented tetragon is perceived as a diamond or a square. Methods used in this study are a forced-choice task as a subjective measurement and eye tracking as an objective measurement of perceptual processes. Overall, 31 stimuli were presented to the participants: a tetragon in two different sizes with an additional element (a dot) located inside or outside the object at three different positions at three distances. The results indicate significant changes in shape perception, depending on the location of the additional element. The results are complemented with eye movement analysis indicating that as the distance between the elements increases, there is a higher probability of either of the two shape interpretations and the gaze is less likely to be directed to the area between the stimuli. Furthermore, the subjective perception of shape is codetermined by the shape perception when the tetragon is presented without the additional element.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.