X-linked spinal & bulbar muscular atrophy (SBMA) is characterized by adult-onset muscle weakness and lower motor neuron degeneration. SBMA is caused by CAG-polyglutamine (polyQ) repeat expansions in the androgen receptor (AR) gene. Pathological findings include motor neuron loss, with polyQ-AR accumulation in intranuclear inclusions. SBMA patients exhibit myopathic features, suggesting a role for muscle in disease pathogenesis. To determine the contribution of muscle, we developed a BAC mouse model featuring a floxed first exon to permit cell-type-specific excision of human AR121Q. BAC fxAR121 mice develop systemic and neuromuscular phenotypes, including shortened survival. After validating termination of AR121 expression and full rescue with ubiquitous Cre, we crossed BAC fxAR121 mice with Human Skeletal Actin-Cre mice. Muscle-specific excision prevented weight loss, motor phenotypes, muscle pathology, and motor neuronopathy, and dramatically extended survival. Our results reveal a crucial role for muscle expression of polyQ-AR in SBMA, and suggest muscle-directed therapies as effective treatments.
Extracellular vesicles (EVs) play key roles in glioblastoma (GBM) biology and represent novel sources of biomarkers that are detectable in the peripheral circulation. Despite this notionally non-invasive approach to assess GBM tumours in situ, a comprehensive GBM EV protein signature has not been described. Here, EVs secreted by six GBM cell lines were isolated and analysed by quantitative high-resolution mass spectrometry. Overall, 844 proteins were identified in the GBM EV proteome, of which 145 proteins were common to EVs secreted by all cell lines examined; included in the curated EV compendium (Vesiclepedia_559; http://microvesicles.org). Levels of 14 EV proteins significantly correlated with cell invasion (invadopodia production; r2 > 0.5, p < 0.05), including several proteins that interact with molecules responsible for regulating invadopodia formation. Invadopodia, actin-rich membrane protrusions with proteolytic activity, are associated with more aggressive disease and are sites of EV release. Gene levels corresponding to invasion-related EV proteins showed that five genes (annexin A1, actin-related protein 3, integrin-β1, insulin-like growth factor 2 receptor and programmed cell death 6-interacting protein) were significantly higher in GBM tumours compared to normal brain in silico, with common functions relating to actin polymerisation and endosomal sorting. We also show that Cavitron Ultrasonic Surgical Aspirator (CUSA) washings are a novel source of brain tumour-derived EVs, demonstrated by particle tracking analysis, TEM and proteome profiling. Quantitative proteomics corroborated the high levels of proposed invasion-related proteins in EVs enriched from a GBM compared to low-grade astrocytoma tumour. Large-scale clinical follow-up of putative biomarkers, particularly the proposed survival marker annexin A1, is warranted.Electronic supplementary materialThe online version of this article (doi:10.1007/s11060-016-2298-3) contains supplementary material, which is available to authorized users.
Background: The growing interest in measuring blood free testosterone (FT) is constrained by the unsuitability of the laborious reference methods for wider adoption in routine diagnostic laboratories. Various alternative derived testosterone measures have been proposed to estimate FT from either additional assay steps or calculations using total testosterone (TT) and sex hormone-binding globulin (SHBG) measured in the same sample. However, none have been critically validated in large numbers of blood samples. Methods: We analyzed a large dataset comprising over 4000 consecutive blood samples in which FT as well as TT and SHBG were measured. Dividing the dataset into samples with blood TT above and below 5 nM, using a bootstrap regression modeling approach guided by Akaike Information Criterion for model selection to balance parsimony against reduction of residual error, empirical equations were developed for FT in terms of TT and SHBG. Results: Comparison between the empirical FT equations with the laboratory FT measurements as well as three widely used calculated FT methods showed the empirical FT formulae had superior fidelity with laboratory measurements while previous FT formulae overestimated and deviated systematically from the laboratory FT values. Conclusion: We conclude that these simple, assumption-free empirical FT equations can estimate accurately blood FT from TT and SHBG measured in the same samples with the present assay methods and have suitable properties for wider application to evaluate the clinical utility of blood FT measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.