X-linked spinal & bulbar muscular atrophy (SBMA) is characterized by adult-onset muscle weakness and lower motor neuron degeneration. SBMA is caused by CAG-polyglutamine (polyQ) repeat expansions in the androgen receptor (AR) gene. Pathological findings include motor neuron loss, with polyQ-AR accumulation in intranuclear inclusions. SBMA patients exhibit myopathic features, suggesting a role for muscle in disease pathogenesis. To determine the contribution of muscle, we developed a BAC mouse model featuring a floxed first exon to permit cell-type-specific excision of human AR121Q. BAC fxAR121 mice develop systemic and neuromuscular phenotypes, including shortened survival. After validating termination of AR121 expression and full rescue with ubiquitous Cre, we crossed BAC fxAR121 mice with Human Skeletal Actin-Cre mice. Muscle-specific excision prevented weight loss, motor phenotypes, muscle pathology, and motor neuronopathy, and dramatically extended survival. Our results reveal a crucial role for muscle expression of polyQ-AR in SBMA, and suggest muscle-directed therapies as effective treatments.
Author Contributions: E.B.L. and conceived and designed this study. C.P.C performed RNA and protein expression experiments in patient brain and iPSCs. M.P. carried out screen for repeat size and risk allele genotype. J.M.P. performed tau biosensor cell experiments.
Maternal social stress among breastfeeding women can be adapted in chronic process. However, neuroendocrine mechanisms underlying such adaptation remain to be identified. Here, we report the effects of 2 hr/day unfamiliar male rat invasion (UMI) stress on maternal behaviors in lactating rats during postpartum day 8 (UMI8) to postpartum day 12 (UMI12). Rat dams at UMI8 presented signs of maternal anxiety, depression, and attacks toward male intruder. These changes partially reversed at UMI12 except the sign of anxiety. In the supraoptic nucleus (SON), UMI12 but not UMI8 significantly increased the expression of c-Fos and phosphorylated extracellular signal-regulated protein kinase 1/2. At UMI8 but not UMI12, length of glial fibrillary acidic protein (GFAP, astrocytic cytoskeletal element) filaments around oxytocin (OT) neurons was significantly longer than that of their controls; the amount of GFAP fragments at UMI12 was significantly less than that at UMI8. Expression of cystathionine β-synthase (CBS, enzyme for H2S synthesis) at UMI12 was significantly higher than that at UMI8. CBS expression did not change significantly in the somatic zone of the SON but decreased significantly at the ventral glia lamina at UMI8. In brain slices of the SON, aminooxyacetate (a CBS blocker) significantly increased the expression of GFAP proteins that were molecularly associated with CBS. Aminooxyacetate also reduced the firing rate of OT neurons whereas Na2S, a donor of H2S, increased it. The adaptation during chronic social stress is possibly attributable to the increased production of H2S by astrocytes and the subsequent retraction of astrocytic processes around OT neurons.
Astrocytic morphological plasticity and its modulation of adjacent neuronal activity are largely determined by astrocytic volume regulation, in which glial fibrillary acidic protein (GFAP), aquaporin 4 (AQP4), and potassium channels including inwardly rectifying K + channel 4.1 (Kir4.1) are essential. However, associations of astrocyte-dominant Kir4.1 with other molecules in astrocytic volume regulation and the subsequent influence on neuronal activity remain unclear. Here, we report our study on these issues using primary cultures of rat pups' hypothalamic astrocytes and male adult rat brain slices. In astrocyte culture, hyposmotic challenge (HOC) significantly decreased GFAP monomer expression and astrocytic volume at 1.5 min and increased Kir4.1 expression and inwardly rectifying currents (IRCs) at 10 min. BaCl 2 (100 μmol/l) suppressed the HOC-increased IRCs, which was simulated by VU0134992 (2 μmol/l), a Kir4.1 blocker. Preincubation of the astrocyte culture with TGN-020 (10 μmol/l, a specific AQP4 blocker) made the HOC-increased Kir4.1 currents insignificant. In hypothalamic brain slices, HOC initially decreased and then increased the firing rate of vasopressin (VP) neurons in the supraoptic nucleus. In the presence of BaCl 2 or VU0134992, HOC-elicited rebound increase in VP neuronal activity was blocked. GFAP was molecularly associated with Kir4.1, which was increased by HOC at 20 min; this increase was blocked by BaCl 2 . These results suggest that HOCevoked astrocytic retraction or decrease in the volume and length of its processes is associated with increased Kir4.1 activity. Kir4.1 involvement in HOC-elicited astrocytic retraction is associated with AQP4 activity and GFAP plasticity, which together determines the rebound excitation of VP neurons.
Introduction: In the regulation of oxytocin (OT) neuronal activity, hydrogen sulfide (H2S), a gaseous neurotransmitter, likely exerts an excitatory role. This role is associated with increased expression of astrocytic cystathionine -β- synthase (CBS), the key enzyme for H2S synthesis. However, it remains unclear whether H2S is mainly produced in astrocytes and contributes to the autoregulation of OT neurons. Methods: In hypothalamic slices of male rats, OT and H2S-associated drug effects were observed on the firing activity and spontaneous excitatory postsynaptic currents (sEPSCs) of putative OT neurons in the supraoptic nucleus (SON) in whole-cell patch-clamp recording. Expression of glial fibrillary acidic protein (GFAP) in the SON was analyzed in Western blots. In addition, changes in the length of rat pups’ hypothalamic astrocyte processes were observed in primary cultures. Results: In brain slices, OT significantly increased the firing rate of OT neurons, which was simulated by CBS allosteric agonist S-adenosyl-L-methionine (SAM) and H2S slow-releasing donor GYY4137 and blocked by CBS inhibitor aminooxyacetic acid (AOAA). L-α-aminoadipic acid (L-AAA, a gliotoxin) blocked SAM-evoked excitation. OT and SAM also increased the frequency and amplitude of sEPSCs; the effect of OT was blocked by AOAA. Both OT and GYY4137 reduced GFAP expression in the SON. Morphologically, OT or GYY4137 time-dependently reduced the length of astrocyte processes in primary cultures. Conclusions: These findings indicate that the auto-excitatory effect of OT on OT neurons is mediated by H2S from astrocytes at least partially and astrocytic H2S can elicit retraction of astrocyte processes that subsequently increase OT neuronal excitability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.