AimGlial fibrillary acidic protein (GFAP) molecularly associates with aquaporin 4 (AQP4) in astrocytic plasticity. Here, we further examined how AQP4 modulates osmotic effects on vasopressin (VP) neurons in rat supraoptic nucleus (SON) through interactions with GFAP in astrocytes.MethodsBrain slices from adult male rats were kept under osmotic stimulation. Western blot, co‐immunoprecipitation, immunohistochemistry and patch‐clamp recordings were used for analysis of expressions and interactions between GFAP and AQP4, astrocyte‐specific proteins in the SON, as well as their influence on VP neuronal activity. Data were analysed using SPSS software.ResultsHyposmotic challenge (HOC) of acute SON slices caused an early (within 5 minutes) and transient increase in the colocalization of AQP4 with GFAP filaments. This effect was prominent at astrocytic processes surrounding VP neuron somata and was accompanied by inhibition of VP neuronal activity. Similar HOC effect was seen in the SON isolated from rats subjected to in vivo HOC, wherein a transiently increased molecular association between GFAP and AQP4 was detected using co‐immunoprecipitation. The late stage rebound excitation (10 minutes) of VP neurons in brain slices subjected to HOC and the associated astrocytic GFAP’s ‘return to normal’ were both hampered by 2‐(nicotinamide)‐1,3,4‐thiadiazole, a specific AQP4 channel blocker that itself did not influence VP neuronal activity. Moreover, this agent prevented hyperosmotic stress‐evoked excitation of VP neurons and associated reduction in GFAP filaments.ConclusionThese findings indicate that osmotically driven increase in VP neuronal activity requires the activation of AQP4, which determines a retraction of GFAP filaments.
Astrocytic morphological plasticity and its modulation of adjacent neuronal activity are largely determined by astrocytic volume regulation, in which glial fibrillary acidic protein (GFAP), aquaporin 4 (AQP4), and potassium channels including inwardly rectifying K + channel 4.1 (Kir4.1) are essential. However, associations of astrocyte-dominant Kir4.1 with other molecules in astrocytic volume regulation and the subsequent influence on neuronal activity remain unclear. Here, we report our study on these issues using primary cultures of rat pups' hypothalamic astrocytes and male adult rat brain slices. In astrocyte culture, hyposmotic challenge (HOC) significantly decreased GFAP monomer expression and astrocytic volume at 1.5 min and increased Kir4.1 expression and inwardly rectifying currents (IRCs) at 10 min. BaCl 2 (100 μmol/l) suppressed the HOC-increased IRCs, which was simulated by VU0134992 (2 μmol/l), a Kir4.1 blocker. Preincubation of the astrocyte culture with TGN-020 (10 μmol/l, a specific AQP4 blocker) made the HOC-increased Kir4.1 currents insignificant. In hypothalamic brain slices, HOC initially decreased and then increased the firing rate of vasopressin (VP) neurons in the supraoptic nucleus. In the presence of BaCl 2 or VU0134992, HOC-elicited rebound increase in VP neuronal activity was blocked. GFAP was molecularly associated with Kir4.1, which was increased by HOC at 20 min; this increase was blocked by BaCl 2 . These results suggest that HOCevoked astrocytic retraction or decrease in the volume and length of its processes is associated with increased Kir4.1 activity. Kir4.1 involvement in HOC-elicited astrocytic retraction is associated with AQP4 activity and GFAP plasticity, which together determines the rebound excitation of VP neurons.
Introduction: In the regulation of oxytocin (OT) neuronal activity, hydrogen sulfide (H2S), a gaseous neurotransmitter, likely exerts an excitatory role. This role is associated with increased expression of astrocytic cystathionine -β- synthase (CBS), the key enzyme for H2S synthesis. However, it remains unclear whether H2S is mainly produced in astrocytes and contributes to the autoregulation of OT neurons. Methods: In hypothalamic slices of male rats, OT and H2S-associated drug effects were observed on the firing activity and spontaneous excitatory postsynaptic currents (sEPSCs) of putative OT neurons in the supraoptic nucleus (SON) in whole-cell patch-clamp recording. Expression of glial fibrillary acidic protein (GFAP) in the SON was analyzed in Western blots. In addition, changes in the length of rat pups’ hypothalamic astrocyte processes were observed in primary cultures. Results: In brain slices, OT significantly increased the firing rate of OT neurons, which was simulated by CBS allosteric agonist S-adenosyl-L-methionine (SAM) and H2S slow-releasing donor GYY4137 and blocked by CBS inhibitor aminooxyacetic acid (AOAA). L-α-aminoadipic acid (L-AAA, a gliotoxin) blocked SAM-evoked excitation. OT and SAM also increased the frequency and amplitude of sEPSCs; the effect of OT was blocked by AOAA. Both OT and GYY4137 reduced GFAP expression in the SON. Morphologically, OT or GYY4137 time-dependently reduced the length of astrocyte processes in primary cultures. Conclusions: These findings indicate that the auto-excitatory effect of OT on OT neurons is mediated by H2S from astrocytes at least partially and astrocytic H2S can elicit retraction of astrocyte processes that subsequently increase OT neuronal excitability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.